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PREFACE 

This book contains the Proceedings of the Fourth Conference on the Numerical Simu- 
lation of Plasmas held at the Naval Research Laboratory, Washington, D.C. on the 
2nd and 3rd of November 1970. The conferences on the Numerical Simulation of Plasmas 
were used in the past to disseminate progress in the state-of-the-art of plasma simula- 
tion and specific applications of computer experiments to plasma physics. The first 
conference was held in 1967 at the College of William and Mary; the second was held 
in 1968 at the Los Alamos Scientific Laboratory and the third at Stanford University 
in 1969. At the time of the Fourth Conference, the field reached a highly sophisticated 
degree of maturity and won the acceptance of the general Plasma Physics Community. 
The number of presentations related to plasma simulation at APS Meetings of the Plasma 
Physics Division has been exponential since 1963. Eight percent of the total papers 
presented at the 1970 APS Meeting were in the field of numerical simulation. Most of 
these papers were oriented toward the application of numerical methods to the solution 
and understanding of physical phenomena. Therefore, the decision was taken at the 
Third Simulation Conference at Stanford to restrict the papers presented at the Fourth 
Conference to numerical techniques rather than the application of such techniques to 
plasma physics. It was further decided that the papers should be more comprehensive 
even though this would reduce the number of papers which could be presented orally 
at a two-day conference. The selection of papers for oral presentation at the Conference 
was based on the detailed, extended abstracts submitted by the authors. These extended 
abstracts provided the basis for evaluating proposed presentations in light of the two 
objectives of the Conference. The ultimate objective of the Conference was to present 
the state-of-the-art to which plasma simulation has evolved. An auxiliary goal was to 
make available to the general community a set of proceedings encompassing all aspects 
of the field and providing the researcher with a working reference and the graduate student 
with guidelines in this area of research. 

The Conference was comprised of four sessions. The first session was composed of 
advanced numerical models and programming methods for computer representation of 
plasmas. The second session, designated computational sciences, was comprised en- 
tirely of invited papers which dealt with numerical techniques in fields other than plasma 
physics. The third session dealt with numerical methods for the solution of plasma models 
other than particle simulation. The fourth session included the theory of particle simula- 
tion as well as detailed optimization techniques. 

It is felt that this Proceedings provides a reasonably complete and detailed exposi- 
tion of the current state of numerical plasma simulation and will be useful to both the 
novice in the field and the professional. 

We wish to extend our thank. to the authors and participants who made the 1970 
Conference a success. We are grateful to Professors C. K. Birdsall and J. M. Dawson 
for their assistance in selecting the format of the Conference. We wouid like to acknowl- 
edge the help and assistance provided by the Management of the Naval Research Lab- 
oratory in the hosting of this Conference, anJ especially, the superb efforts of the Tech- 
nical Information Division in the preparation of these Proceedings. In addition, we would 
like to acknowledge the help and assistance of Mrs. Tena M. Mason and Mrs. Melba 
O. Doorosky in organizing the Conference without which the Conference could not 
have been held, as well as their efforts in prodding the editors in the preparation of manu- 
scripts. 

July 19, 1971 
Naval Research Laboratory 
Washington, D. C. 

JAY P. BORIS, EDITOR 

RAMY A SHANNY, EDITOR 
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Relativistic Plasma Simulation—Optimization 
of a Hybrid Code 

J. P. Dons 
Naval Research L>'horalwy 

Washington. O.C. 

I.      IMTRODUCTION 

This paper contains the description of a plasma-simulation program, 

CYIRAD, for two-dimensional systems of charged, fully relativistic partic: es 

with fully retarded, self-consistent electric and magnetic fields. The geaattry 

of the basic physical system is r-z cylindrical, so tne elemental charges are 

azimuthally symmetri-. rings, but the methods generalize to other geometries 

and to three dimensions quite easily. Two and three dimensional calculations 

on such a complete plasma model would have teen rather impractical on the small, 

slow computers of previous generations; therefore, only recently has the pro- 

blem of finding efficient, accurate, numerical models for solving this problem 

been much more than an academic exercise. The larger and faster machines 

presently available make these calculations possible today, however, and the 
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soaring costs of high-technology plasma experiments make them necessary. Thus, 

the author hopes that CYlüAD will be of interest. 

Many important problems in astrophysics, plasma physics, high energy 

accelerator physics and electronics can be approached computationally by 

following the orbits of a great number of representative simulation particles 

under the interactions of their self-consistent electrostatic and electromagnetic 

forces. These self-consistent fields are often augmented in real problems by 

additional forces caused by charges and currents which are external to the 

domain of interest. Electrostatic calculations In plasms codes with time 

12} 
indepenuent applied electric and magnetic fields have been used, ' ' for example, 

to study electrostatic streaming instabilities and magnetic containment problems. 

It has long been realized that self-consistent magnetic fields would have to be 

calculated, as well as the electrostatic fields, to liave an adequate description 

of many important plasma physics problems. Although the self-consistent electro- 

static forces dominate in some non-charge-neutral systems, there exist many regimes 

where self-consistent electromagnetic effects cannot be lgr*t-; «• i. 

Two rather different circumstances can occur in jj»sna problems which 

are essentially charge neutral. In one class of problems fairly large, approxi- 

mately divergence-free currents are present; the magnetic fields and induction 

electric fields which arise can then be comparable to or larger than the residual 

electrostatic fields caused by deviations from charge neutrality in the plasma. ' 

In another class of charge-neutral problems there need be no large plasma 

currents and yet electromagnetic effects contribute significantly to the plasma 

A y  ft 
behavior, for example, through radiation effects or anisotropy instabilities. ' ' 

In many cases the approach of non-equilibrium plasma to thermal equilibrium is 

determine * predominantly by relatively weak electromagnetic effects rather than 

the stronger electrostatic phenomena simply because non-equilibrium plasmas, 
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which are electrostatically «table, are often unstable to one of the electro- 

magnetic modes. Problems of these two types are often those in which induction 

electric fields are important but where the transverse displacement current .'a 

not the dominating term in Ampere's Law. Ma induction model, where the magnetic 

vector potential satisfies the ftiscon Equation, v^A = — J , is usually called 

9 
Darwin's model.' Electromagnetic radiation is not present but the induction 

electric field is retained so that low-frequency electromagnetic plasma phenomena 

such as Alfven waves will be properly described. ' 

In a third class of problems, the particles are fully relativistic. The 

magnetic and electric energies are then comparable, even in non-charge-neutral 

systems. In this class of problems the self-consistent electromagnetic radiation 

can also be important. Although there are many problems where the particles are 

relativistic but where radiation can be neglected, and many problems where radia- 

tion interactions are important but where the particles are non-relativists, 

the usefulness of a plasma simulation program which handles both relativistic 

particle effects and a fully time-dependent electromagnetic field is assured. 

Intended applications fcr CYLRAD are relativistic-electron-beam generation and 

propagation, electron-ring-accelerator design, transmission line transformer 

design, and basic plasma studies. 

In CYLRAD all three components of the electric field and all three 

components of the magnetic field are advanced forward in time from the evolvant 

Maxwell Equations, 

ÖE 
•£■   « e7xB-l»n £  , (1») 

OB 
5= • -c 7 x E , (lb) 
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using a fully reversible algorithm which ensures that the constitutive Maxwell 

Equations, 

7 • E » f+n p , and (2a) 

7 • B - 0 , (2b) 

are satisfied to computer round-off accuracy at each timestep.  Here E and J3 

are the vector electric and magnetic fields respectively, J_ and p are the 

current and charge densities, and c is the velocity of light. Azimuthal symmetry 

gives simple conditions on E,  J3, J and p at the axis and perfectly-conductinp 

metallic boundary conditions are presently being applied at a finite radius 

R   * (NR + t)  *6r to give a tractable, bounded sy-tem. The system is periodic: 

in the Z direction with a replication length of Z   ■ NZ*6z. 
" max 

The relativistic Newton Equation for each particle using the Lorentz 

force in the laboratory frame of reference, 

dP    qE   qV 
-rr ■ — +  x B , (Ja) dt    mo   m0c   — ' yj   ' 

completes the specification of the system.    Here q and m0 are the particle 

charge and rest mass and the velocity V, is related to JP , by 

V-- P // 1 + 77?*   • (3b) 

Notice that the rest mass has been ext.-acted from th° definition of _P.   An 

accurate, reversible single-pass ir^Miod for integrating theso particle equations 

is presented which gives the correct particle orbits in the simple limits.    This 

algorithm takes special account of the cylindrical geometry so that orbits passing 

through the axis can be integrated without loss of accuracy. 
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The algorithm described here is more flexible than those given pre- 

viously * ' and reduces to previous algorithms in special cases. This algorithm 

retains the advantageous property of being fully reversible while decoupling the 

prescriptions for current and charge-density apportionment. Thus, an electro- 

static calculation can be recovered by setting c and J to zero in Eqs. (la-lb) 

and various charge and current algorithms can be tested to optimize the playoff 

between accuracy and running-speed. The method is computationally fast because 

12 6 
expensive divergence-conservative current ' algorithms can be bypassed. Further, 

several timesteps of the electromagnetic field quantities can be performed, for 

each particle timestep, without destroying the reversibility of the algorithm. 

Thus, particle pushing, which is at best an expensive process, need only be done 

once every few timesteps when the particles satisfy V,. « c and tu  « c/6x. 
XiP pe 

In this paper the main emphasis has been placed on numerical techniques 

with the aim of showing how the various aspects of program optimization can be 

balanced in constructing a fairly general plasma simulation code.    The CYLRAD 

program falls into the category of a hybrid code, one which contains features of 

both fluid and particle calculations.    In CYLRAD the   partial differential Maxwell 

Equations are solved by finite difference techniques while the particle equations 

of motion are integrated using techniques specially devised for performing fast 

particle trajectory calculations. 

The discussion of the methodf breaks similarly into two parts, the 

solution of the Maxwell Equations with arbitrary sources J_ and p, and the integra- 

tion of the particle equations of motion with arbitrary forcing fields.    In 

Section II, the details of the Maxwell-Equation integration are given and analyzed. 

Appendices A, B, and C discuss important tide issues related to solving the 

Maxwell Equations.    Poisson-solver programs are discussed briefly in Appendix A. 

In Appendix B, generalizations to other geometries, to three-dimensions, and to 

implicit difference schemes are considered.    A^ndix C generalizes the discussion 

im i 11 nWiriii tiimtrr,,- . T —y*-"--*-'*-" ^  
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to cover the ease where the dielectric constant of the medium c(z,r), is not 

constant and where the boundary conditions are complicated. Section III describes 

the details of the fully reversible particle integration. Section IV contains a 

discussion of merging these two major parts of the code. A method is presented 

for integrating the particles over a much longer timestep than is possible for 

the electromagnetic fields while keeping the overall algorithm fully time rever- 

sible. Section V describes of a few simple test calculations performed to test 

the code and to point out the various computational properties of the method. 

 ^ * - ' -i'- .  _^ '"■'-: ;--  : -: '■ ^   ■    
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II. SOLUTION OF THE MAXWELL EQUATIONS WITH ARBITRARY SOURCES 

In this section the particular staggered-leapfrog integration of the Maxwell 

Equations (la-2b) used in CYLRAD is described in detail assuming that the charge 

density p (r,z,t) and the three components of the current J (r,z,t) are arbitrary 

but given functions. These sources need not satisfy the charge-conservation 

condition, Eq. (h),  exactly. The CYLRAD algorithm corrects for any discrepancy 

between P and J as related by Eq. (k)  so we are considering, for the moment, just 

a general purpose Maxwell-Equation solver. The algorithm given here decouples 

the charge-and-current-apportionment prescriptions for added efficiency, con- 

venience, and flexibility. The discussion concerned with relating these source 

terms to the particles is deferred until Section IV. 

Professor 0. Buneman of Stanford has pointed out the computational advan- 

tages of employing a reversible, fully-causal formulation for the electromagnetic 

22 13 
field equations. *■*■' He argues that the digital computer is basically a causal 

device, processing information in a deterministic way, and one will find com- 

putational physics an easier discipline if this is Kept in mind. He further 

argues that reversible algorithms which mirror the reversibility properties of 

the classical manybody problem should be used in the numerical calculations. 

Whatever other misbehaviors may be present, certain types of instability and 

other systematic inaccuracies will be absent. Modern computers are specially 

suited to simple, very fast calculations so it is easier and usually more 

profitable to use simple, clean, low-order algorithms and a highly refined mesh 

rather than complicated high-order schemes and coarser meshes. The former 

course conforms more closely to the "mentality" of modern computers than the 

latter and considerably shortens the lead time to results. In other words it is 

often better to use brute force subtly in computational physics rather than to 

try to be brutal in the use of subtlety since the essence of high-speed computers 

is brute force. 
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The numerical algorithm suggested by Buneman fcr solving the Maxwell 

Equations in three-dimensional Cartesian coordinates automatically ensured the 

consistency condition 

ÖP _ + V • J ■ 0 
ot  — — CO - 

by carefully choosing a current-accumulation algorithm to complement the NGP^ ' ' 

charge-interpolation algorithm. Professor Buneman further suggested a relatistic 

particle-pushing algorithm to ensure that V for the simulation particles could never 

exceed c_, the velocity of propagation of waves in the Maxwell Equatlc s. Although 

Buneman realized that this algorithm would be useful for solving problems where 

electromagnetic modes interact strongly with plasma, he also pointed out that an 

artificially small value of c could be used to bring the various time and length 

scales in the plasma closer together for computational convenience. This is much 

in the spirit of choosing a 100:1 mass ratio, for instance, in electrostatic 

calculations. 

6, 
A recent application of these ideas  has generalized the charge apportion- 

ment to bilinear interpolation and specialized the calculation to two dimensions. 

The CYLRAD code solves the Maxwell Equations in a 2-D azimuthally symmetric, 

perfectly-conducting, metalic cylinder but the basic algorithm is applicaole 

for three dimensions and for other geometries. 

23 39 
A staggered-leapfrog scheme *•'■'  is used to advance B, and E causally in a 

fully space- and time-centered way. Figure 1 shows the entire time line for 

CYLRAD with the electromagnetic field integration and the particle integration 

separated. We are primarily interested in the field integration here, the upper 

portion of the figure. The electric and magnetic fields are specified at different 

times to ensure time centering and the currents are assumed to be known at the 

magnetic field times. The electric field is integrated forward from t ■ -36t to 

10 

__ 
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CYLRAD TIME INTEGRATION 
CENTERED AND REVERSIBLE 

Bo Bs 
MAGNETIC B_vt  B^n B.^1 B(/1    8l/f   Bs/f J Bvt 

FIELD       i 

ELECTRIC 
FELD 

r 
E-i     E-t    E-i     Eo 

-r 
Et 

J_i_L 

SOURCES J-v* 
i 

j THREE RADIATION 

j TIME STEPS PER 

l       PARTICLE STEP 

Jl/* 

PARTICLES V-v«       Xo Jl- 

Figure 1. Time centering in CYLRAD. The field 
and particle variables are specified at times such 
that the temporal integration is fully reversible, 
centered, and second-order accurate. 

CYLRAD GRIDS x Er.Br.Jr     o   E0.B4J« 
a Ez,Bz, Ji     •   p, 4> 

NR1C---^-^--HK---O---^--9--*--O--*---9---*---9---X---9---X 

rmoxNRHr1   I   M   M   M   M"» < '-WALL 

-AXIS 

NZ NZ NZINZINZ2NZ2 

Zmox 

Figure 2. The four interlaced meshes in CYLRAD. By 
fully centering the meshes consistent definitions of the 
finite-difference operators allow full second-order ac- 
curacy (except near the axis). 

11 
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t = -26t using the magnetic field and current specified at t = -5/2Gt to compute 

the right hand side of Eq. (la). The magnetic field is then integrated forward 

one tiaestep from t = -5/2&t to t = -3/2Öt using E^  to compute the right hand 

side of K3. (lb). This leapfrogging of E and B_ can then be repeated indefinitely 

to give the numerically-computed time evolution of the electric and magnetic 

fields. Since E and JB are both needed at the same time for energy diagnostics 

on the fields and for particle pushing, ¥  is computed at t = 0, for example, 

in a fully centered way by averaging B (t + l/26t) and £ (t - l/26t). This is 

done by integrating B forward only half a step on exit from the field-integration 

subroutine when t = 0 in the figure. 13 is then integrated forward another half 

step on entry to this routine prior to performing the leapfrog integration for 

the next few timesteps. This reduces the storage required since ¥ and £ can 

reside in the same matrices in the computer memory. 

Figure k  shows the four staggered spatial meshes used in the CYLRAD program. 

Staggering the meshes in this way ensures that spatial centering, and thus second- 

order accuracy, is maintained throughout the bu".k of the mesh. This, coupled with 

complete time centering, ensures that full reversibility is also retained. The 

meshes extend from 1Z = 1 to NR1. The allowed region for the particles extends 

from z = 0 to Z   and from r = 0 (the axis) to r = R   (the wall) as marked in 

the figure. The r and 9 fields (x and 0) meshes) have IR = 1 at the axis and 

IR = NR1 half a cell outside the wall of the metallic cylinder. The Z and scalar 

fields (D and 0 mesh points) have IR = 1 half a cell past the axis and IR = NR1 

right at the outer metal wall. The boundary conditions at the axis are then 

Er(l,J) = 0 = Br(l,j), 

Ea(l,J) - 0 = Be(l,j), 

p(l,j) = p(2,j), 

(5a) 

12 
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60(1,1) = 60(2,j), 

B (1,J) - B (2,j),   and 

Ez(l,j) ■ Ez(2,j). 

At the outer limits of the mesh (the radial factors are defined by Eq.  (8)) 

p(NRl,.j) ■ irrelevant, 

6#(NEl,j) - 0, 

Ez(NRl,j) - 0, 

B (NRl,j) « computed normally, 

Er(NRl,j) - Er(NR,j)* r"/r+ , 

Br(NRl,j) - -Br(HH,j)  , 

E9(NR1„1) ■    -Eg(NR,j), and 

B9(mi,j)   » BQ(NR,j)* r"/r+ . 

The significance of 60 will be brought out shortly. 

(5a) 

(5b) 

Periodic boundary conditions on a are assumed (see Appendices A,B,C) so 

columns IZ = 1 and IZ = NZ2 are replicated from columns IZ - NZ1 and IZ = 2 respec- 

tively. These extra columns are used as guardlines, a technique also used on the 

26 
MRHYDE staggered leapfrog mesh  , to simplify the calculation throughout the in- 

terior of the mesh. The value of HZ = NZ2-2 must be a power of 2 in CYLRAD to 

satisfy the fast-Fourier transform Poisson solver but NR1 is arbitrary. The mesh 

spacing is uniform in both r and z but the mesh intervals or and 6z are arbitrary. 

Figure 2 could apply equally well to a Cartesian grid but the boundary con- 

ditions at the axis, Equations (?a), would have to be replaced by some other 

set appropriate to say a metal wall. In Cartesian coordinates it is easy to 

show that the usual centered difference operators defined on the me^h of Fig. 2 

satisfy the usual vector differential relations 

V-DxA- S°' (6) 

13 



Txr^wiW't*3^&z**^~?,f!*'''"- 

PW'-i LJH4.J.H.11J—)gp 

Boris 

w so • 
^0 S £ • £D* 

and 

(6) 

The maintenance of -bese relations in the difference analogues of the differential 

operators is essential if the distinction between transverse and longitudinal 

fields, vital to the solution of Maxwell's equations, is to hold properly in the 

numerical solutions. This separation is used throughout CYLRAD. 

Since we do not wish to have divergence of 13 deviate from zero, for instance, 

if initially set to zero, the divergence of the curl operator, T^x, must be 

identically zero in Faraday's law, Eq. (2a). This condition, when satisfied, 

has the further consequence that thf transverse and longitudinal parts of the 

electromagnetic field can be decoupled in the difference as well as the dif- 

ferential Maxwell Equations when the dielectric matrix € = constant. That is, 

the V_ x B  term in Ampere's Law, Eq. (la) cannot contribute to the longitudinal 

part of E either. To insure this, the divergence operator 7_ has been chosen in 

a difference form to ensure that 7_ • (2p x A) is identically zero for any vector 

field A_ whatsoever. 

To ensure these relations in cylindrical coordinates, I have defined 

6r 

6z 

(7£)xA)r(i,j) =  A9 (i,j+l) -Ae(i,j) 

 Bi ' 

(VAyifj) 
SA

r(
1»J) -Ar(l,J-D 

6z 

Az(i+l,j) - Az(i,j) , 

(7a) 

(7b) 

(7c) 

(7d) 

14 
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(20
xA)z(i,tj) =    rjAgd.j) -r^AQ(i-l,j)  , 

r. ~5r 
l 

(?•) 

(^,'A)(i,j) =    tjAr(i,j) -r^Ar(i-I,j) 
r.  6r i 

+    Az(i,j+1)  -Az(i,j) 
6z 

(7f) 

The subscript D refers to "difference" operator. Throughout the rest of this 

paper the indices i and j will be used for IR and IZ respectively. These 

variables will be indexed as on their respective grids in Fig. 2. The indices 

on the radial factors r., r. and r. have the following meaning: 

r±  ■ (i-3/2)6r, 

r. s r.+ 6 r/2, and (8) 

r7 = r. - 5 r/2 

It is an easy matter to verify relations (6) using Eqs. (7) and (8). This of 

course, requires the definition, 

vD0(i,j) =   r^(i+l,.j)-2r10{i,j)+r.0(i-l„l) 

r. 5r2 

+ 0(i,,i+i?-g»(l,J?+»(i,J-l) 
6z2 

(9) 

The step-by-step leapfrog integration of the Maxwell Equations can thus be 

written symbolically as 

E(i,j,t = 6t)    =   E(i,j,t = 0)    + c6tf^jXB(t = 6t/2)J (i,j) 

-^TT J(i,o,t - fit/2) , and 
(10) 

B(i,j,t = 3/2 fit)    =    B(i,j,t = 6t/2) - c6t r2l)xE (t = fit)] (i,J)  . (11) 

15 
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This basic integration scheme has been tested thoroughly in Symbolic Algol*' * * 

23 39 
and discussed elsewhere.     It has the following dispersion relation (in Cartesian 

coordinates), 

sin2 
»fit k fix c26t* k fiy 

in2 -i- + -a?- ^ -f- 
and thus the stability condition, 

6t*^/(l+^), 

(12) 

(13) 

because it is an explicit algorithm. Long wavelength modes propagate effectively 

at c but there is a numerical dispersion of modes due to the finite-difference 

approximations used. The shortest mode which can be represent on the mesh 

has wavelength 2 cells. Here k 8x»u, for instance, and the dispersion, as 

shown in Fig. 3, for one dimension, is a maximum. The short wavelength modes are 

slowed down below the speed of light artificially. In one dimension, with 

cöt/Sx ■ 1, this dispersion car. be minimized but in two dimensions, there are 

always badly dispersed short wavelength modes. In all (stable) cases, however, 

the modes are non-diffusive so the mode amplitudes remain unchanged in time. 

The electromagnetic part of the CYLRAD code is therefore completely energy con- 

servative in this sense. 

Appendix B considers extensions of the CYLRAD electromagnetic field integrator 

to other geometries, to three dimensions, and to other difference schemes. In 

Appendix C the inclusion of a spatially varying dielectric matrix is discussed. 

By including a matrix (l/c)(i,j) defined on the 8 mesh (and averaged onto the other 

3 meshes, much more general problems including Cerenkov radiation and metal bounda- 

ries can be included with a minimum of effort because the C-metal boundaries are 

computed exactly as all other points. The causal, conservative formulation of the 

Maxwell Equations employed here makes this especially easy and ensures that the 

boundary conditions arc satisfied for all time. 

The question of the current source terms in Eqs. (la) and (10) mv.it be settled 

16 
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new.    In physical problems the continuity equation, 

öt 1' £" °> (lfc) 

must always be satisfied. This ensures that every charge in the system 

has come from somewhere physically and will be going somewhere physically. It 

seems sensible, therefore, to ensure this condition in our firr'te-difference model 

for Maxwell's Equations. Since our divergence operator has already been specified, 

Eq. (1*0 gives a numerical consistency condition between p and J. We have no 

reason to suspect that p(r,z,t) and the longitudinal part of J(r,z,t) satisfy 

this numerical condition since we are treating these sources as arbitrary inputs, 

suitably discretized, to a field integration algorithm. In practical plasma 

12 6 
applications where P and J come from particles ' , this condition can be enforced 

at some computational expense by considering current fluxes through space-time 

cell boundaries. In the general case, where boundary conditions may be compli- 

cated however, the continuity equation must be used specifically to correct the 

input sources. This frees the input to allow vector fields of p and the longi- 

tudinal current J. which are only approximately consistent. In pure Maxwell- 

Equation calculations for instance, analytic forms for p and J^ can be used with- 

out worrisome consideration of consistency. In plasma calculations the current 

and charge-apportionment algorithms can be completely decoupled for simplicity, 

generality, and computational efficiency, frus allows one to greatly speed the 

calculation of particle trajectories, by far the slowest part of the relativistic 

plasma simulation. 

Of course extra work must be performed elsewhere to ensure Eq. (14) but 

this loss is small compared to the gains realized. To enforce consistency, either 

the charge density or the current must be modified. Since only the currents 

17 
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appear in the dynamicnl Maxwell Equations and since fie charge density is a 

zeroth moment while J is a first monent, it is natural and physically sensible 

to Modify the longitudinal current to be consistent with the given charge density. 

This is done through the Poisson Equation, 

7 • E ■ *mp (15) 

rather than through the continuity equation.    The given currents give rise to an 

electric field via the leapfrog scheme, which has both a transverse and a longitu- 

dinal part.    Thus 

E.(t+*t) -EjftJ «■ -4ti«t JL(t+6t/E) (16) 

can be solved for E.(t+6t), actually calculated simultaneously with a transverse 

pari.    If we call this field E*, for the moment, 

» • E* • knp* f http (17) 

because of the assumed inaccuracies in J..    The corrected field £ is found by 

subtracting the difference gradient of a correction potential 6 0  fron E*.    Thus 

It is easily seen that 

E • E» - V    6#   . —     —       -D 

-ff2 6 t ■ Itnp 

(18) 

(19) 

forces 

o • E ■ Imp 

It must be stressed the 6# (i,j) is only a correction potential, not the full 

electrostatic potential.    The major portion of the longitudinal part of E is found 

op 
from integrating Ampere's law;    only discrepancies between J and rr appear in 6 0 . 

The boundary conditi  ns on 6$, which are implied by Eq. (19), depend 

on the boundary condit   >ns satisfied by E*.    In CYIÄAE, E * is zero on the metallic — z 

wall at r ■ It-» and therefore 6 * * 0 at the wall is both simple and correct.    If, 
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as is possible using complicated current algorithms, the continuity equation in 

difference form is automatically satisfied, 6$ is zero throughout the system. If 

on the other hand, the deviations from consistency are of tae order of truncation 

errors in the finite difference scheme, as will be the case for the fairly efficient 

current-charge algorithm used fox the particles in CYLPAD, small, acausal longitu- 

dinal correction fields will be felt throughout the system. These fields propagate 

with infinite speed across the system but are generally bery srall. 

The Maxwell Equation solver described nere, even without self-consistent 

particle orbit? promises to be very useful in transformer, waveguide, and antenna 

calculations. Analytic or empirical current fields can be specified and the ra- 

diation fields can be found. Appendix C, as mentioned earlier, allows extension 

of these field calculations to much more complicated geometries where the dielectric 

constant is an arbitrary function of position. The program is completed when equa- 

tions for the plasma particles have been added to the system. The next section 

treats integration of the relativistic equations of motion of charged particles 

in given E_ and h  fields. These particles will then be totalled on the mesh to get 

self-consistent current components and charge densities, uced as sources in the 

solution of Maxwell's equations. 

20 
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THE CYXRAD PARTICLE PUSHER 

The relativistic equations of motion for a point particle of rest mass 

m   and charge q in a given electric and magnetic field are 

dP(t) 

"dt 

dX(t) 

"dt 

£(t) *fl(*(*?|t), 
E (X(t),t) + —  V l+P2(t)/c2 

m c o 

v(t), 

(20; 

(21) 

where P = v/fl-V2/«:2) . This definition of P will be noted to differ from the 

usual relativistic particle momentum by the factor of m which has been extracted 

so that P reduces to V in the Galilean limit. A finite difference algorithm to 

integrate these equations should satisfy three basic criteria: 

1) accuracy, 

2) speed, 

3) s implicity. 

Several algorithms for the non-relativistic oase with arbitrary E_ and B^ fields 

have been used previously; a comparison of these has been performed by Carl 

Wagner of MRL.   The most used of these is the reversible, so-called "implicit" 

algorithm where E_ end B^ are given at t, when the particle position X is specified, 

and where V is integrated forward one timestep from V~  at t-6t/2 to V„ at t+6t/2. 

The new velocity is found by solving the 3*3 system of equations 

VVN  V'    m-  2mc VVN  V  - * (22) 

Here 0 and N have the mnemonic meaning "old" and "new" respectively  This method 

is characterized by the time-centered V, x 5. *enn usin8 the average of the new 

and old velocities. The name "implicit" arises because V is involved implicitly 

in the right-hand side. 

This method has several nice properties which make it quite attractive: 

l) The algorithm is reversible. The particle trajectory can, in 
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principle, be retraced if time is reversed in the code. This neglects 

of course, computer round-off errors. 

2) The usual electrostatic leapfrog algorithm is recaptured when J3 ■ 0. 

3) When JE ■ 0, the particle moves in a non-drifting circle ai.d the radius 

of the r.rbit is constant. By dotting (3) with (V„ + V ) 6t one finds 

V^ - Vs ■ a 6tE • (V + V ), 
N   0  m  - \_N  V' (23) 

showing that |vN| = |vJ in the absence of an electric field. 

h)  The energy gain, by (h),  is just 13 * V, as would be expected on 

physical grounds, 

5) The frequency of the finite timestep cyclotron gyration can be corrected 

by the standard tan a/a correction  so that the particles themselves 

execute the classical orbits at precisely the correct gyrofrequency. 

An additional criterion which can be satisfied is: 

6) Simplicity an' hence speed. The implicit algorithm can be made 

acceptably fast if programmed carefully. Solving Eq. (22) by a 3 x 3 

matrix inversion is not the fastest way, as shown shortly. 

The orbits generated by the implicit algorithm even in the case of constant 

13 and J3 are not exact but can be improved to give the correct E_ x J3 drift by 

modifying the electric field vector, as well as the magnetic field, to include 

corrections for the finite-difference features of the algorithm. This can be 

done in another, simpler, way. As long as |15 x 3J < B2, these exists a frame of 

reference in which the electric field is zero. By subtracting the velocity 

V ■ c 13 x J3 / B2 where E and B are evaluated at the current particle position, 

we get the following "E xB" algorithm for advancing the velocity. 

V, " V0 " V (2*0 

22 
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Za'Il +  |~ (v2 
+V.) x B (plus tana/a), 

V   + V_ . 
8       £ 

(24) 

The advantages of the E x jB over the implicit algorithm are that exact 

cycloidal orbits, without modifications to the electric field can be obtained 

in the limit where E and B are constant. Furthermore, V„ can be precompiled 

as a cell quantity and so (24) can be made somewhat faster than (22). The 

method (2k),  for all its physical appeal, suffers a serious defect. When 

IH x JLl > B2 *nere is no frame of reference where E is zero but £ can be trans- 

formed away; Thus a wholly different algorithm is needed when V„ > c. Still a 

thiid algorithm would be required when V_ B  c. These problems arise in practice 

when the magnetic field is zero and thus pose serious problems, for instance, 

when configurations with neutral points, lines, or planes are being considered. 

There exists a third variation of the implicit particle pushing algorithm 

which possesses advantages of both the implicit and EiB methods and can be made 

somewhat faster than either. In addition, it generalizes conveniently to the 

fully relativistic equations (l) whereas direct solution of Eq. (22) in the 

implicit algorithm does not. The algorithm is basically three-step in nature: 

V3^. 
qst V   -V   t^d+VjxB (using tan a/a), 

-& ■   i     2mc  *TS     -l      — 

V, 

(25) 

N v£* 
By applying half the electric field before the magnetic field rotation and 

half afterward, the algorithm becomes fully reversible and yet the .nagnetic 

interaction can be treated in the absence of an electric field. This latter 

fact is very important wnen one generalizes to the relativistic Eq. (20). 

When the algorithm in (25) is used, it is easy to show that the implicit result 
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is recovered. When the magnetic field JB is zero, the usual electrostatic leap- 

frog method is recovered so that V (V + v ) . aS*   E. 
N   0   __ _... 

Since thf orrect cyclotron frequency can be achieved by corrections to B, 

the solution arising from Eqs. (25) must be judged somewhat superior to the 

other methods mentioned because it is faster. It is made fast using the two- 

step rotation procedure given above, rather than the usual ' x 3 linear-equation 

reduction, to solve for V given V (with JE absent). This is done by setting 

V   ä 

-S. 
V   + f V   x B , 

V   "V   +fV   xB (26) 

where 
t«j£|B| 

and f   - 2f /(1+ f^B2). 

In practice f is expanded up through fourth order and evaluated very efficiently 

giving roughly single-precision round-off-sized truncation errors on the IBM 360/9I 

where 6 to 7 digits can be kept through most calculations. 

Figure h  shows the geometric interpretation of this method in the plane 

perpendicular to B. The pure magnetic push over timestep 6t with constant j3 is 

really a rotation of V in the velocity space by the angle ß ■ <u 6t ■ <l6t mc |B|. 

The correction factor f ensures that V is displaced an angle of exactly ß/2 

from V even though V does not lie on the orbit circle beacuse it has the 'trong 

magnitude. V x £ does point from V through V because the angle has be«.-n 

bisected, however, FO the magnitude correction f ensures that tay9 x B stops exactly 

on V . It should be fairly clear that the amount of work involved computationally 

is much less than required to solve Eq. (22) directly even with E ■ 0. The two- 

step "half E_" algorithm, which is shown in Eq. (25) requires in fact about 35^ 

fewer operations than the implicit push. 

24 
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£s8tqB/mc 

VELOCITY   SPACE  ROTATION 

*■■*        v.8t\ASt 

cota s(lLL^8t) *' 
r   

r* 

AXIS +vr8tH 
CONFIGURATION SPACE ROTATION 

Figure 4. Geometric interpretations of the 
particle pushing algorithm. Both the con- 
figuration space and velocity space portions 
of the algorithm contain energy conserving 
rotations. 
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When the relativistic equations are being solved, the relativistic mass must 

be used in expressing the factor fx. Thus, ^—■ J     °    where P is the 

relativistic momentum ( over mo ) replaces V in the previous arguments. Pro- 

vided that P8 is constant, therefore, the relativity merely amounts to a re- 

normalization of the magnetic field. This is the great advantage of the "half E" 

algorithm. By separating the electric and magnetic interactions in the relativis- 

tic generalization of Eqs. (25), Ps
2" Px

z has been assured and thus P2 inside the 

square root, 

J 02 + P2 
which is used in the magnetic field renormalization, can be treated as constant 

over the tlmestep and evaluated explicitly. Except for this square root factor, 

the relativistic and classical integrations are the same. 

Actually, in the course of updating the particle position as well as its 

velocity, three more square roots must be taken, one to retrieve the laboratory 

velocity from P_ and two to correct for cylindrical coordinates, a problem dis- 

cussed below. To handle these four square roots in the optimized code (they 

take about 15$ of the particle-pushing time in the Fortran version of the code), 

a special hand-coded PL360 program has been written which requires no power series 

expansion*» to start. A table look-up process on the floating point exponent and 

the floating point fraction is used to get a very good starting value for a 

simple iteration which doubles the number of significant figures every cycle 

This rovtine requires ~ 3 usec per square root and thus uses only 40$ of the time 

taken by the system square root. One pays for this with a table of over 1000 

words, a fairly small price on the IBM 360/91. 

The integration of P from t - 5— to t + 5— constitutes only half of the 

particle-pushing algorithm. Integration of X from t to t + 6t is accomplished 
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as follows in Cartesian codes: 

«is X(t * fit) = x(t) + «tv(t + Y~) . (27) 

fit, 
In the relativistic case V(t + s—) is determined, as mentioned above by taking a 

square root, an annoying but not prohibitive procedure. What is more constricting 

is the cylindrical coordinate system in which we must operate. In Cartesian 

coordinates X executes circular motion in constant B with zero E and moves with 

the proper parabolic motion when E_ is constant and B zero. Great difficulties 

arise from the angular momentum accelerations of the charged rings in the r-8 

plane of a cylindrical system. At the axis, for instance, there is a cubic 

singularity I^/r3 when the angular momentun is nonzero. Furthermore, we would 

like to preserve helical orbits (circular in the r-0 plane) for single particles 

in a constant axial magnetic field. The algorithm given below accomplishes this 

in a very simple and therefore efficient way by focusing on the Cartesian-cylin- 

drical transformations. Therefore singularity and circularity problems are com- 

pletely bypassed. 

We need only consider the perpendicular plane and are give« V and Va , r    ö 
fit 

defined at t + 5— , with which we must advance r and 8. Since the basic enzatz 

is azimuthal symmetry, however, only the radius r of the charge rings is given 

as no 6 variation is permitted. We are free, therefore, to focus on the ring 

element at 6 = 0, as shown in Figure h\>.   The particle traverses the straight 

line element V fit from r, to r». At the starting point V ■ V and V * V„. —      ™*  —* x  r    y  0 

Since these velocities continue constant throughout the time interval 6t, we 

have: 

(28) 

\ ' V96t . 
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The Initial radius is rx.   The final radius r2 is given by 

(29) 

The optimized square root is used of course. During the next timestep r2 becomes 

tx and is again assumed to lie along the x axis. The matter does not end here. 

Since r_ has rotated an angle a, the resolution of V along r and 8 must be changed 

at the end of the timestep even though the actual velocity of each ring element 

is constant over the entire interval 6t. The transformation used is simple, 

r2  rx 
cos a + ve  sina , 

(50) 

Va = -V  sina + VQ  cos a 
e* e. 

where sina = \/r2  , cos a = Xj/r2 . The only problem arises when a "particle" 

stops exactly ».o ihe axis. In this case, we can arbitrarily set cos a = 1 and 

sina =0. This mates all momentum radial which it would have to be for a 

particle to stop on the axis. 

Stringent tests of this entire technique Ir.ve been performed. Energy is 

conserved exceedingly well when E_ is zero because the particles execute perfect 

circular motion about a constant axial magnetic field. It is obvious, in this 

respect, that transformation (30) is energy conserving. It is also clear that 

the algorithm is fully reversible, a property generally considered good in particle 

pushers. 

The data format of the coordinates and velocities for each ring is floating 

point although the positions are treated in fixed-point insofar as area weighting 

is concerned. The DIC method of area weighting is used,  a fixed-point tech- 

nique particularly well suited for use when the multi Le-mesh feature of the 

field definitions is taken into account. Normal bilinear area weighting of E_, 

Ja, £ and p is used but four distinct meshes and hence four distinct sets of 
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weights are needed. (The currents are also being treated N6P, as discussed 

elsewhere.) By using DIC, these weights are precomputed for a finite set of 

M x M subcells with each computational cell. M and M are powers of 2 so 
z  r z    r 

that the subcell numbers are represented as loggM and loggM,, sequential bits 

in the fixed-point representations of z and r respectively. 

In actual use, of course, the accuracy of the particle-equation integra- 

tions is not perfect. The method is fully second order, due to the time centering 

and reversibility and thus the well established guidelines for particle pushers 

must hold as discussed in Section IV. Thus fit should be chosen sufficiently 

small that to fit and to 6t are considerably less than unity. One also expects^'5 '" 

that the code will misbehave when XD and c/iu  are lengths considerably less than 

one cell. From preliminary runs, as discussed in Section V, the greatest errors 

seem to arise from interpolating particle wource terms and field quantities to 

and from the cylindrical mesh. 

The initial Fortran version of the particle pusher used 1^5 usee of computer 

time per particle on the 360/91.   A highly optimized PL560 version has been 

written which is computationally identical but which requires only 95 usec per 

particle. The savings result from special computational techniques '» ' ' 

which can be written effectively only in machine code. Shifts, rather than fix 

and float operations, can be used to sort out the cell and subcell numbers for 

instance. It is felt that even greater improvements can be made by increased 

use of fixed-point operations. 

Although the PL360 version is highly machine dependent, similar techniques 

would be profitable on other machines with a greatly different structure. Of 

particular importance in particle pushers is the one-pass aspect of the overr.jl 

algorithm. An entire timestep can be performed with only a single reference to 
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the particle tables. It external mass storage is being used for the particle 

table, the relatively e-mensive transfer times to and from disc, say, need only 

be paid once per timestep. In the present example, magnetic disc transfer times 

per particle are about 65 |isec for reading and writing, quite comparable to the 

particle-integration time. Since these transfers can be overlapped with each 

other and with the one-pass integration of particles in the CHJ as well, optima], 

use is being made of the computer. Even when direct core residence time is not 

being charged as CHJ time for i/o transfers, as is the case on the IM 360/91, 

total program residence time must be considered. If, for example, overlapping 

were not possible, the running of a 1 houi1 CHJ job would require roughly 3 hours 

of wall time. If the program filled core (as these jobs often do), nonoverlap- 

ping (or a poor compute-transfer balance, ecu Id mean that two thirds or' more 

of the CHJ computing power was being wasted. Since computer centers are also 

aware of this possibility, it is not surprising to see that most charging algori- 

thms charge by the core request as well as the CHJ time used. Thus jobs which 

fill core usually pay for the whole machine since fractional utilization of the 

CHJ is no longer a factor. 
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IV. MEBGCTG THE FIELD INTEGRATION WITH THE PARTICLE IMTBGRATION 

In Section II a rather general algorithm was given for numerically integra- 

ting the Maxwell Equations forward in time to determine the three components 

of E and the three components of B on the two-dimensional r-z mesh with all values 

being specified at the same point in time. In Section III an optimized, ef- 

ficient algorithm is given for integrating the relativistic charged-particle equations 

of motion given E and B fields on a uniformity spaced r-z mesh. To complete 

specification of the entire CYLRAD algorithm, the prescription for merging 

these two phases of the calculation is now discussed in more detail. 

Interpolating E and B from the mesh to the particle position is carried 

through according to the usual area-weighting, or bilinear interpolation 

algorithm.5 '5 Although the mesh is basically cylindrical, this part of the 

calculation is carried out as if the mesh were Cartesian. At the axis, where 

problems with the metric will be most eevere, E , E„, B , and B. vary linearly 

anyway so the calculation will be accurate. The z components of E and B 

typically vary quadricatically away from the axis so the straight area weight- 

ing will only be accurate to zero order in these two cases. 

The calculation of the sources is currently being carried out in the 

usual charge-and current-sharing approximation as on a Cartesian grid but 

several extra degrees of freedom are permitted the physicist here. Even though 

the charge and current densities are required in Maxwell's Equations, the CYLRAD 

particle pusher gives the total charge and total currents in each cell. 

Presently this total charge and current is being divided by the exact cell 

volume but this part of the calculation can be modified in many ways. Averaging 

over several adjacent cells could reduce spurious fluctuations, for example. 

In area weighting to determine the fields and sources, the geometric inter- 

pretation is that of an azlmuthally syametric ring with rectangular cross-section 
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expanding and shrinking as it moves on the mesh.   The ring extends from 

r-or/2 to r-tor/2 in radius and from z-ftz/2 to z+dz/2 along the axis.   Although 

rwre than half of the ring's charge, if of uniform density, lies outside r, the 

simple area weighting prescription does not take this into account.   To treat 

this properly, the radius r   used in computing the sources oust be somewhat 

larger than r in order that simple charge sharing have nr, systematic error. 

It is easy to show that 

rc* Vr2 +i 
(51) 

forces the usual charge sharing to allocate the correct proportion of charge 

inside and outside of the particle radius r since r Is the center-of-charge 

radius of the extended ring (The improved square root routine is used here). 

One also has the possibility of employing k-space smoothing '  of p and J by 

Fouler analyzing in the z direction. This would not improve the radial varia- 

tion at all but would be helpful where the radial variation is smoothed by 

other means. Thus finite-sized particler could be used easily in Cartesian 

codes. Perhaps then the HOP algorithm for charges and currents could be used 

with sufficient accuracy. 

It has been mentioned that the DIC, ,25'57 or Discretlzed Interpolation 

in Cells, method has been used for all the bilinear Interpolations and charge 

sharing. In this program each cell is thought of as subdivided Into an array 

of l6xl£ subcells. For each sübcell the four weights for the cell comers are 

precaleulated as If the particle were at the center of the subcell. Thus the 

particles are effectively calculated nearest Grid Point In the subcells rather 

than the major cells. These weights are stored In a table and "looked up" 

when needed by a very fast algorithm rather than recalculated each time. 
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DIC is particularly useful in CYLRAD where four distinct meches must be 

treated so that the sane set of weights cannot he reused for all the com- 

ponents of E and 3 or J and p. A table of mights is calculated for each nesh 

and all can be referenced by locating the particle on one of the meshes. The 

present particle pusher, in optimized form, takes 95 ^sec/particle of which 

about 30<is area weighting. If direct recalculation of all of the weights 

were performed, approximately four tines as auch work would be done on the area 

weighting thus doubling the CHJ time required per particle. 

A glance at Figure 1 shows that the current J is specified at the velocity 

tine, half way between the two position times at the beginning and the end of 

the tlmestep. To ensure centering, therefore, the current mist be area 

weighted twice; half of the current is apportioned before the position is up- 

dated (but using the new velocity) and half of the current, using the save 

velocities, is apportioned to the new position at the end of the tlmestep. 

In addition to centering J and thus keeping the algorithm fully reversible, a 

sort of averaging is being pertorar d which will help greatly in smoothing 

fluctuations which are highly enhanced in this numerical plasaa due to the 

paucity of particles in a Debye sphere relative to sost real plasmas. 

Figure 1 snows the entire timeline for CYLRAD with particle aa well as 

field times indicated for a case where 3 radiation steps are performed for 

every particle «imeatep. The current J , , is used in each of the 3 radiation 

steps integrating E , B to EQ, B . These latter fields are then perfectly 

centered to Integrate V^, to 7S< and hence X from XQ toX#. The ability 

to perform fully reversible multiple field tlmesteps for each particle 

tlmestep is very Important to the optimisation. In Section II the stability 

criterion for the field integration was given. This means, in practice, that 

light can traverse only half a cell or less per tlmestep. Even for extremely 

relativistic particles, two or three radiation steps could elapse between 

particle steps thus speeding up the code by a factor of two or three. In 
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non-relativistic plasmas the situation is even worse and decoupled timesteps 

are even more necessary. An average particle traveling at 0.1c would need 20 

timesteps or so just to cross a single cell regardless of L or <B 

When the presence of the particles are included in the stability analysis 

in a simple way, one finds the dispersion relation, 

3ins u>6t =   c26t; 

6x; 

+  S!ä*£  sin* 
6y2 

-*(¥) 
(i^) + 

(32a) 

m   2ot2 

pe 

for the case of one particle step for each radiation step. Eq. (32a), in the 

long wavelength limit, reduces to the correct physical dispersion relation, 

f»6t\ 
\    2    / 

up    =    U)    2 

pe 
(32b) 

Since sin2 1 l"-OT' 1    cannot exceed unity for a numerically stable mode, we now 

have a much more stringent stability condition on 6t, 

Ot2 

In       " dense pi 

cr      + _c 

fix2 

IB    £ 

öy; *-¥- (33; 

m   2 will dominate.    Then 6t  <- pe * P« 
for stability. 

When the density is very low, we approach the previous result. In all cases, 

however, the presence of plasma acts to require a shorter timestep for 

stability and hence makes multiple timestepping more attractive. 

Empirically, multiple timestepping has been found stable and otherwise 

numerically well behaved. There is some evidence, although not conclusive, from 

early runs that multiple timestepping reduces the emission of bremsStrahlung 

tr<m particle <. Mislcns. This is very much to be desired in a numerical model 

where collision frequencies are too large anyway due to the relatively small 

number of particles which can be followed. Dispersion relations can be found 
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analytically but they are extremely complicated even in the case of only 2 or 3 

radiation steps per particle step. In seme of the simpler limits, however, 

the dispersion relUtion has been solved with the result that the algorithm 

is numerically stable as expected. 

25 
The data structure of CYLRAD follows that of P POWER  closely. The grid 

quantities, 11 in number (3 E's, 3 B's, 3 J's, p, and l/f ), are all kept in 

fast core storage as single precision floating point numbers. Given 330K 

words, certainly available on an IBM 360/91, we have 30K words/matrix. This 

is 120 x 256 in resolution. The particles are stored in an arbitrary number 

of records of fixed length which can reside either in core or on an external 

i/o device. The program is transparent to the actual node of the record 

storage so the program runs identically on small in-core systems and large 

out-of-core systems. 

Figure 5 a. shows the structure of each record. The first 16 words of 

each record contain pertinent information about the particles in the record 

such as charge, mass, the speed of light, fit, ör , 6s , etc. The first word 

of the record heading contains the number of particles in the record. All 

records have the same number of particles, NPART. 

Following the heading are N?ART disposition bytes, one for each particle 

in the record. The disposition byte can have any one of 256 values, each in 

principle specifying a different specific action to be taken tor the corres- 

ponding particle. At present 0 means the particle is to be integrated 

normally and any other value means that the particle is to be ignored. Some 

particles could be integrated for a while without contributing to the sources. 

Others could have their charge varied slowly, for example. 

Following the disposition bytes, actually held in NPARTA words, are 

5* NPART words containing the positions and velocities for each particle. 
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5a. DATA STRUCTURE 

[BECORD HEADINR 

DR,   DZ,  HASS,   ETC. 

5b. INITIALIZATION 

RECORD 1      RECORD 2 

IZMAX COLS. 

NPARTA 

WORDS 

5«NPART 

MORDS 

DISPOSITION »YTES- 

1 PER PARTICLE 

POSITIONS AMD MOMENTA 

FIVE WORDS FOB EACH 

OF THE NPART DIFFER- 

ENT PARTICLES 

TOTAL RECORD LENGTH (WORDS) 

IS ♦ NPART/» ♦ 5«NPART 

RHAX, 

IRMAX 

ROWS 

RST 

F 

i 

< 

ZST 

ZOFF ZOFF 

AXIS 

IRMAX»IZMAX ■ NPART 

Figure 5. Record data structure of CYLRAD. (a) The organization of 
sach record with heading, disposition bytes, and particle coordinates 
and momenta, (b) Record initialization of particle locations. Uniform 
density cylinders, slugs, and tubes can be initialized. 

36 

m ma —mmm 11 rumm ii    r 



Relativiatic Plasma Simulation 

The order is z, r, P , P., P for each particle. The momenta (divided by rest 

mass) are in real physical units but the positions are carried In cell units 

to aid in locating the particles on the grid in fixed point. 

The records of particles can be grouped into larger units celled classes. 

The classes could comprise different species of say n records each but their use 

is somewhat more general. It is convenient to consider electrons in oppositely 

directed beams as being in different classes, for example, since the kinetic 

energy and momenta of each class are printed out as well as the total kinetic 

energy and the total momenta of the system. Different classes cculd also have 

different q. values but the same q/mo value in order to pack rather finely certain 

40 4l 
important regions of phase space. ' 

In initializing the positions and velocities of the particles, the record- 

class structure is also useful. All records in a class, using the present 

initializer, are given the same drift and thermal velocities, these six num- 

bers being specified as data for each class. The positions of the particles 

within a class are initialized as shown in Fig. 5b. The charge density arising 

from each record is nearly constant over a cylinder extending from RST to RMAX 

and fron ZST to ZST+IZMAX*DZ where I2MUC is an integer factor of NJART. The 

number of particles distributed radially from RST to RMAX for each value of IZ 

is IRMAX s NBfcRT/lZMAX. After each record in the class, ZST (Z start) is incre- 

mented by ZOFF (Z offset). Thus continuous cylinders, hollow cylinders, full 

tubes of plasmas, slugs, and point blobs can all be initialized with the same 

program. This capability covers most of the simple configurations of interest 

including homogeneous plasmas, streaming instabilities, E layers, and electron 

beam drift tubes and thus helps to optimize a programmer's time by minimizing 

reprogramming. 
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V. TESTS OF CYLRAD 

Several ofthe test problems used to check out various facets of the CYLRAD 

program are described in this section and the results are given. The tests 

performed to date have been quite comprehensive but the testing phase is still 

incomplete. Simulation with plasma in the system has only recently been achieved 

and much remains to be done with diagnostics, radiation levels, and stability. 

The tests chosen for discussion here will be described in chronological order. 

The first part of the program written was the main program with data struc- 

ture, loop logic, and provision for data buffering. This framework was largely 

25 
copied from the PPCWER program  and thus has been thoroughly tested and used 

extensively. To this framework was added the Maxwell Equation integrator without 

provision for source terms. Figure 6 shows selected computer output of the 

Transverse Magnetic cavity modes from one of the test runs. The system was 

initialized at t = 0 by setting all fields to zero except for E. and B.. 

These two components were made nonzero only in a small torus as shown in the 

first picture for B„. 

As noted in Appendix B, TE and TM radiation separates conveniently in the 

code as well as in real wave-guides. Thus the field components (E-, B' , B ) 
o  r  z 

and (B., E , E ) remain totally decoupled in the code. The code was run with 

only E„ nonzero and then with only B. nonzero proving that TE and TM are actually 
9 tf 

decoupled in the code. 

In Fig. 6, the initially localized radiation spreads out at velocity c 

until it fills the cavity.   The eigenmodes excited then continue to oscillate 

independently.   Since Maxwell's Equations are linear, perhaps the most important 

tests of this phase of the calculation were the energy and divergence checks. 

Without sources _V • E and v • B are both zero to computer roundoff   as they 

should be, for runs lasting thousands of timesteps.   The energy in the system 

is conserved to about 0.031? over the same length of time with no observable 
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CYLRAO-TM RADIATION   7/2V7D 

B.(at) 

R.. 13.75  Z.-38.4 

C-2.0   dt'0.05 
B^Z.t) 

WALL 

L, AXIS fO.0 

t'1.0 

■ 

t«20 »•75 

=:?;•           • •   : ■■■ 

t-30 

Figure 6. Transverse magnetic cavity modes. An initially localized 
distribution of Be(r,z,t=0) (all other fields zero) was released and 
followed in time. Energy conservation holds to a few hundredths of 
a percent with an infinite conductivity metallic wall. 
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systematic trends. This is reasonable because the staggered leapfrog ccheme 

is marginally stable and because the wave equations are linear and the eigen- 

modes of the cavity are orthogonal numerically as well as physical Jy. The small 

fluctuations observed are due, in fact, to the small Incompatibilities between 

the energy-calculating algorithm and the actual conserved amplitudes of the 

modes. The energies of TE and TM fields are conserved separately as expected. 

The Poisson solver is described in Appendix A. Several severe tests were 

conducted separately and then the subroutine T-SS inserted into CYLRAD. The 

most severe test performed in CYLRAD had J set by a random number generator and 

p set to zero at each time step. The divergence of E was printed out before 

and after the Poisson solve»  Since CYLRAD forces the longitudinal part of 

E to be consistent with p, v • E should be zero af«r the Poisson solve in 

this test. In the runs, the magnitude |v^ • Ej topped by roughly 5 orders of 

magnitude. This is about the best one could expect taking the roundoff-error 

figures for the Foisson-solver accuracy into account. 

The psrti^le pusher was then written and tested separately in a number of 

simple applied fieldr. Figure 7 shows the radius versus time curves for four 

partic?.es in a constant axial magnetic field. The electirc field is zero in 

this case. Each particle had identically the same axial and perpendicular 

energy but the particles were started at different radii. As can be seen in 

the figure, all particles have exactly the same frequency. This frequency, 

furthermore, is given correctly by 

■e "ft  ,GT W 
0 ~* p2+c2 

to roughly machine roundoff because of the  g »  correction described in 

Section III. The particles were initialized so that each started at a different 

radius or in a different direction. One of the particles looped around the 

axis so that its radial excursion apparently differs from that of the other 
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CYLRAD PARTICLE ORBITS 

Figure 7. Radius versus time for four particles 
at fixed momentum in a constant axial field. The 
electric field was chosen zero. The diameter and 
period of the four orbits are identical. The par- 
ticles are executing off-axis circular orbits as 
theoretically predicted. 
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particles but this is not actually the case. If the effective negative r posi- 

tion is marked, as shown by the dashed lines in the figure, all particles can be 

seen to have orbits with the same diameter. 

One of the particles passes through the axis during each orbit. The two 

components of the perpendicular momenta are shown in Figure 8 for this parti- 

cle. The radial momentum changes discontinuously (drawn linearly) over one 

timestep and the azimuthal momentum has a cusp. Even for this particle the 

energy is conserved out to machine roundoff in the absence of electric fields. 

The ability to treat orbits accurately near the axis for beam problems was one 

of the reasons for choosing to solve the momentum equation directly rather than 

to utilize conservation of angular momentunr to get V. from AQ. 

A radial, linearly increasing electric field was applied to this particle 

and the test performed again. Energy is not conserved exactly in this case 

because the electric field was not self-consistent, but the orbit was 

periodic and did return to the initial energy when the particle returned to the 

axis. The main feature of this test was the presence of an azimuthal E x B 

precession of the orbit which appeared as expected. During these various 

particle tests, the source matrices calculated were pninted out and checked in 

detail to ensure that the area-weighting algorithm works properly. 

The particle pusher was then inserted into the CXLRAD code and the entire 

program was tested on the increasing-current run whose results are shown in 

Fig. 9. A column of charge was initialized along the full length of the axis 

extending out to a finite radius less than the tube radius and then accelerated 

sic*ly along the axis by an applied non-electromagnetic force. Initially only 

the radial electrostatic electric fields were present plus a low level of 

cavity modes included to tickle any instabilities, if present. In this 

problem the acceleration was sufficiently slow that a quasi-static azimuthal. 

magnetic field could be expected to develop where B varies as r inside the 
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Figure 8. Radial and Azimuthal Momenta for a particle passing 
through the axis of the cylinder. The orbit is exactly periodic 
and energy conserving even though Pr reverses discontinuously 
as the particle passes through 'he axis. 
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charged cylinder and drops off as l/r outside the cylinder. The mass of the 

particles in the charge cylinder was taken so large that no appreciable radial 

expansion took place from the radial electrostatic field during the course of 

the run. 

In the figure, rBg(r) is plotted at three equally spaced times after the 

beginning of the run. The quantity rB0(r) should vary quadratically out to the 

beam radius and then should be constant outside this radius. The theoretical 

curve is shown for the particle current at t = 150. The numerical data from one 

29-point radial jine is also shown for comparison. The agreement is excellent. 

The levels of rB.(r) seem to be getting closer together as time goes on. This 

occurs because of the relativistic saturation of V at c; only the quantity 

V/4L-VS/C2   is being accelerated uniformly. 

Two other features of this particular test will be of interest. The radia- 

tion fields .enerated when the char;ed beam is accelerated would normally rattle 

about in the cylinder forever were it not for the radiation-absorbing layer 

included in the calculation. This layer extends over two cells in radius, shown 

cross hatched in Fig. 9, and along the full length of the system. The electric 

fields in this region are knocked down at each timestep as +hey would De in a 

resistive medium. Thus the radiation energy which develops does not continue 

indefinitely. During the course of the run the transverse electric energy, which 

does not interact with the beam at all, decreases by two orders of magnitude due 

to the absorption. 

The second feature of the calculation is the presence of an €-metal wall two 

cells inside the real wall of the cylinder. Appendix C discusses the inclusion 

of a spatially varying dielectric constant in CYLRAD. This allows more complicated 

physical problems to be handled where the radiation propagates through a spatially- 
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ISO 
CYLRAD CURRENT TEST 

c*2.0       8t=0.5 

5 STEPS TO I 

t*75.0 •••• 
t* 150.0 o ooo 
t« 225.0 "* 
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Figure 9. Azimuthal magnetic field of a slowly 
accelerated charged cylinder. The solid line 
shows the theoretical magneto-static field which 
would prevail at t = 150.0 if the charged cylinder 
were moving at constant velocity. 
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varying, frequency independent dielectric medium (Cherenkov radiation could be 

treated for instance). An important ise for this flexibility is the case for 

C "* ", which is really treated as l/e ■ 0. As noted in the appendix, the code 

treats this as a metallic, perfectly-conducting boundary condition. Thus com- 

plicated metal boundarys can be included quite easily by reducing the valves in 

the l/€ matrix from 1.0 to 0.0 in regions which are supposed to be metal. 

In the test shown by Fig. 9, the outer wall of the calculation was taken to 

be two cells of this €-metal, explaining th.3 two points at zero near the outer 

radius. This C-metal conserves energy properly and does not contribute to the 

divergence of E or tlie divergence of B. These convenient propertie.. are all made 

possible by the fully -.-ausal treatment of the Maxwell Equations embodied in the 

code. 

A final series of tests are being ccnducted in which the cylinde- is filled 

uniformly with electrons and with a smeared out ion background. The particle 

distribution is initially random in velocity with all fields zero except the 

electrostatic field caused by initial discrepancies from charge neutrality. 

These tests were designed to check overall energy conservation and the bremsstrah- 

lung radiated from the particle collisions. The plasma temperature was low, taken 

so that nX*- ~ 15, and the particles were initialized so that there wer" only 2 

pjr cell on average. These conditions give fairly high collision times and fluc- 

tuation and therefore fairly fast brems Strahlung thermalization. Furthermore, 

because the fluctuation levels are high, conservation of total < :>ergy in the 

code should be all the more difficult to achieve. In typical rune the energy 

was conserved to better than 1# over 4oO ou a when prea weighting was used on 

all fields and sources. When I.'GP was used on the currents, however, with all 

other quantities area weighted, the energy conservation disappeared entirely. 

Errors of 300$ were recorded for the same length run. Th? large NGP error 
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is explained when one realizes that no k-space smoothing to the sources or fields 

25 is being applied as in electrostatic simulations. 

Electromagnetic collision (thenaalization) times go roughly like (<■>/<» )2 

times the corresponding electrostatic times. In simulation plasmas, 10nX2 is 

a rule-of-thumb electrostatic collision time. In the present case, therefore, 

150« 1  is a good estimate of the Coulomb collision time. Since there are at 

most a few modes in the system tested (dimensions Iß cells x 29 cells), the very 

shortest wavelengths, which are the slowest modes to thermalize have (*/<•> )2 ^ 10. 

Thus hOCW    x  is a reasonable estimate for the bremsStrahlung thermalization time, 

in good agreement with the computer simulation. 

When several timesteps for the fields are taken for each particle timestep, 

the bremsStrahlung radiation rate became considerably slower. Thus the ability 

to take multiple timesteps was found to improve the physical properties of the 

simulation as well as the computational, properties. This effect clearly results 

because radiation arises from orbit deflections. When the orbits suffer fewer 

deflections, even though of larger amplitudes, the radiation at short wavelengths 

will saturate moie slowly. 

The field energy saturation levels ere also fairly well explained for these 

tests. In the cas' of NOP current one would expect roughly skT of energy for 

each field component at each grid point. Here T is the temperature at equilibrium. 

One also expects rkT energy in kinetic motion for each particle. Since there are 

2 particles per cell in these runs, the NGP field energy at saturation should be 

roughly twice the kinetic energy. The actual ratio observed was about 5. When 

area weighting is used, wavelengths shorter than ebout *t cells are strongly 

supressed; that is, three fourths of the modes are largely inoperative. This 

means that kinetic energy should be twice the field energy, a ratio clcse 

to the 30^ number given by Fig. 1C. 
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Figure 10. Radiation of Bremsstrahlung by 
a non-equilibrium plasma in CYLRAD. The 
electromagnetic field (initially zero) ap- 
proaches equilibrium, as estimated by equi- 
partitionarguments,as upet approaches 450. 
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VI. CONCLUSIONS 

The two dimensional relativistic plasma simulation program CYLRAD has been 

described in seme detail. Two main modules have been developed, the general pur- 

pose r-z cylindrical Maxwell-Equation solver, and the relativistic particle pusher. 

The overall algorithm is fully time reversible. In several instances, alternative 

algorithms have been mentioned and the reasons for each choice given. General 

criteria of simplicity, flexibility, accuracy, and efficiency have been balanced 

in each of the algorithm choices. The paper has stressed the numerical aspects 

of the CYLRAD program in order to show first, how such a program can be constructed 

to be both flexible and efficient, and second, how the interpj^y between partial 

differential finite-difference techniques (fluid codes) and particle techniques 

can be n rged in the development of a hybrid code. These techniques will find 

application throughout computational physics. In incompressible flow the vor- 

ticity can be aiscretized, for example. Or in the study of galactic evolution, 

the gas clouds could be followed in an MHD approximation while the stars could 

be followed as particles. 

Several of the ideas presented here may be of special interest. 

1} Separation of the longitudinal and transverse contributions of the 

53 currents to the electromagnetic fields has been previously recognized.   The 

method given in Section II and Appendix A is both flexible aid efficient. 

2) A spatially varying dielectric matrix is allowed. The correct boundary 

conditions are automatically satisfied everywhere even when e -» », thus quasi- 

metallic or dielectric obstacles and walls can be pieced arbitrarily in the 

cavity. 

3) A method for accurate integration of the particle orbits near the axis 

of symmetry is given. Thus axis crossings can be handled smoothly without singu- 

larity. 
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h)   The relativistic mass correction is performed in a simple, reversible, 

energy-conserving manner. This integration method is to be contrasted with 

algorithms where V and Y_ are advanced independently. 

5) The completed plasma-simulation algorithm, including the solution of the 

Maxwell Equations and the relativistic particle pusher, allows the fields to be 

advanced on a shorter timescale than the particles. This increased freedom has 

been found to reduce collislonal effects as well as improve program efficiency. 

6) The completed plasma simulation algorithm is fully space-centered and 

fully time-reversible. Thus a host of problems, which might otherwise occur, 

can be avoided. 

Proposed calculations on the IBM 360/91 computer (~ ^OOK words of 32 bits 

each of useable fast core memory) can be performed on a 50 x 512 mesh at less 

than 2.0 seconds per 3 radiation steps plus Poisson solve. Using 11 grids, then, 

of 25K points each still leaves plenty of core for program, diagnostics matrices, 

and particle buffers. By stretching the computational cells 3:1 in the axial 

direction, systems with a 30:1 aspect ratio can be treated easily. The running 

time for this problem, assuming k  particles per spatial grid point is 12 seconds 

(lOOK particles x 100 ^sec/particle + 2 seconds for fields). In physical units 

this is about one iu _1 of real time per minute of CPU time. 
P 
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Appendix A - Poisson Solvers 

In this paper, the constitutive Maxwell Equation, 

7 • E ■ 4TT p , (A-l) 

is ensured by an auxiliary calculation rather than by choosing one of the 

conservative charge-current algorithms. '   The many advantages of this are 

discussed in Section II. One disadvantage is that a Poisson equation must be 

solved. This Poisson equation, 

Vs  60 ■ 7 • E -hnp , (A-2) 

generates a correction potential 60(r,z), whose gradient is subtracted from 

E* to ensure that 

E ■ E* - V60 (A-3) 

satisfies Eq. (A-l). Calling the right hand side of Eq. (A-2) S(i,j), consistency 

of the difference analogues to the differential operators necessitates using the 

5-point Poisson approximation (r , r., r." are defined in Section II), 

r+ 60 (i + 1, j)- 2T±  60 (i,j) + r" 60 (i-1, j) 

r^r2 

+ 60 (i.j+l) - 260 (l.J) + 60 (l.j-1) = S (i,j) , 

(A-M 

for i - 2,5 ..., NR and j = 2,3 ..., NZ1. Here we again use i as the radial 

index IR and j as the axial index IZ. The boundary conditions on 60 are 

60 (l,j) * 60 (2,j) from azimuthal symmetry and 60 (NRl,j) = 0 because the 

outer wall is considered to be perfectly conducting. This second condition is 

true only because E *, the electric field from the staggered leapfrog integration 

of Maxwell's Equatioru, satisfies E * (NRl.j) ■ 0 already. 

It is clear from Eq. (A-M that S(l,j) are not used. Thus p is effectively 

discarded at these points even though the charge-sharing algorithm does attribute 
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some charge to these cells. At the axis all of this charge is used, however, 

in going from a charge matrix to a charge density matrix. At the wall, the 

charge lost can be attributed to a numerical indeterminacy principle which states 

that all charge within half a cell, 6r/2, of the wall connot be distinguished 

from the cancelling image charges in the wall, which also lie in the same 

computational cell. Thus this charge cp.n have no effect on the longitudinal 

fields in the system. 

In CYIBAD, Eq. (A-1*) is solved directly without iteration by a combin- 

ation fast Fourier-transform reduction in the z direction and a double sweep 

matrix inversion of the tridiagonal equations for the resultant Fourier harmonics. 

After Fourier transforming each row of S in the z direction, we need only con- 

sider individual harmonic terms of the form 60  (i) exp (2TT iKj/NZ). Sub- 

stiwting into (A-k) gives 

r + r " 
-L-   x \J-    60K(i + l) -26#K(i)   -i- 8* (1-1)1 
Sr2    L^ "     ri J 

(A-5) 

-k  sin2 TTK/NZ 6*„(1) = S(L). 
'" i\ ft 
6z2 

Solving the tridiagonal system of Eqs. (A-5) for i = 2,3 ..., NR gives a matrix 

of 6 0  to overwrite S . These harmonics are then Fourier synthesized to give 

the final result, 60(i,j). 

The fast-Fourier-transform method was developed h\  the author at Culham' 15 

and has been in use for over a year at NRL in the PPOWER electrostic simulation 

2k  25 
code ' . Every effort has been made to make the code efficient and accurate. 

With the FFT subroutine in assembly language and the tridiagonal solver in 

Fortran, a 128 by 128 system can be Poisson solved in cylindrical coordinates 

in ,h8 seconds on the 390/91- The tridiagonal solver is presently being coded 
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in PL360, a symbolic assembly language for 360 computers, and is being 

modified to solve two harmonic equations simultaneously. The estimated Poisson- 

solving time for the 328 by 128 system will then be about .35 sec. For compar- 

ison, a single radiation timestep leapfrogging E and B forward takes about .20 

sec. in Fortran. Thus the field integration part of the CYLRAD code will be 

slowed by about 50$ if 3 radiation steps are performed for every parlicle step 

(Poisson solve). This 505& slow down of the field integration is small, however, 

when particle integration times are considered as well. With only 2 particles 

per cell, we have over 30,000 particles to integrate every timestep. This is 3 

seconds per timestep for particles, .6 second for fields, and .35 second for a 

Poisson solve. Thus the Poisson solve costs at most 10$ of the cycle time. By 

contrast, the conservative charge-current algorithm, except for possibly knotty 

problems at the boundaries, would allow us to do away with the Poisson solve 

entirely but would roughly double the particle integration time. Thus the 

Poisson solve method saves a factor of about 2 overall. 

As a special case, the conservative charge-current prescription could be 

used in the CYLRAD algorithm resulting in 60 (i,j) • 0 to computer roundoff error 

everywhere in the region of calculation. Since single precision is only 6 figures 

or so on the 360 computers, however, it seems quite likely that some form of 

"divergence cleaning" would still be necessary every 1000 timesteps or so. The 

divergence of B in CYLRAD is zero to only about h  or 5 places, for example, since 

roundoff errors accumulate over a few thousand timesteps of the radiation fields. 

Thus it may be necessary to use such a divergence-cleaning routine for B_ as well. 

It is advantageous to calculate in single precision as much as possible 

since the useable core storage is then effectively doubled. Therefore close 

error checks on the Poisson solver have been performed. The test cases were on 

small l6 x 29 systems and on larger 128 x 128 systems. In the former case 
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V2 60 » S to about 5 figure accuracy; in the latter case, to about k figures. 

As V, 60 is typically only a few percent relative to E*, however, the actual 

error in the physical fields, in the worst cases would only be a few parts per 

million. 

Other methods of Poisson solving would suffice for this problem, of course, 

since the consistency conditions for the difference analogues of the vector 

differential operations prevent the use of Poisson coefficient smoothing ' 

iß 19 20 21 
immediately. Buneman" , Hockney ' , Golub and Nielson  all have direct 

methods for Poisson solving which may be adapted to this problem. Tn addition, 

22 
the classical iteration methods , could also be applied but at a large expense. 

The Fourier method seems more flexible than these methods and is of comparable 

speed and so has been used here. The Fourier method also generalizes conveniently 

to other geometries and to three dimensions since harmonic analysis in the 6 

direction (or X, Y, Z) as well as the Z direction is allowed. 
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Appendix B - Generalizations of the Maxwell Equation Solver 

Since the particle-pushing algorithm treats one particle at a time and 

only five coupled ordinary differential equations must be solved, generali- 

zation of the algorithms given or suggested here to different geometries or to 

three dimensions will be quite straight forward. Modification of the Maxwell- 

Equation algorithms including the Poisson Solver used here presents a far more 

difficult problem from a practical viewpoint. This Appendix considers Maxwell- 

Equation Solvers in other than r-z cylindrical coordinates and gives vari- 

ations on the staggered leapfrog integration algorithm which have special pro- 

perties for various applications. I consider first the integration of the 

Maxwell Equations using an implicit rather than an explicit formulation of the 

partial differential equations. 

An implicit difference equation is one in which the time derivative terms 

include the quantity being solved for at the new time. For the Maxwell 1'quations 

we write, in analogy with Eqs. (10-11), 

E(t+6t) - E(t) + ^-[vD x B(t) + VD x B(t+6t)J 

-lm6t j(t+6t/2), 

B(t+6t) « B(t)  - ~ [vD x E(t) + 7D x E(t+6t)l. 

(B-l) 

(B-2) 

In these vector equations the desired fields E_(t+6t) and _B(t+6t) appear explicitly 

on the left hand side and implicitly on the right. When the finite difference 

operators V are expanded, a complicated coupled system of equations is 

obtained which must be solved either directly or iteratively. These equations 

can be decoupled into 2 three-component sets in either of two manners. Equation 

(E-l) can be substituted into the right side of (B-2) and (B-2) into the right 

side of (B-l) to obtain second-order spatial equations for E_(t+6t) and j3(t+6t) 

separately. 
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Alternatively, the Transverse Electric (EQB B in r-z cylindrical and 

Transverse Magnetic (BQE E in r-z cylindrical) modes can be decoupled in solving 

(B-l) and (B-2). This decoupling is both convenient and physically reasonable in 

2D systems. In testing the present version of CYIBAD the distinction between 

TE and TM radiation has been rigorously maintained and each set of cavity modes 

has been checked for energy conservation and numerical stability independently. 

The dispersion relation for Equations (B-l) and (B-2), when the spatial 

derivatives are all fully staggered in Cartesian coordinates, is 

tan* «6t/2 = **f sin2 kfe/2 + ^f- sin2ky6y/fc ♦ Zg*  •       <** > 

This dispersion relation differs from that found earlier, Eq.(32a), by the conver- 

sion of the sin8 term to tan2 with no other change. This means that the stability 

condition found earlier, because the right side of Eg. (52a) could not exceed 

unity for any wave vector, can be relaxed. In the fully implicit algorithm 

under discussion here, marginally stable oscillatory solutions exist for 

any 6t because tan2 ranges from zero to infinity. The dispersion properties 

of this method are as bad as for the explicit algorithm, however, as can be 

seen in Figure }  for a one-dimensional case with low plasma density. Thus the 

implicit algorithm, if used with substantially longer timesteps than allowed by 

the explicit stability condition, will suffer unacceptably large numerical dis- 

persion in physically interesting wavelengths. 

The more appropriate regime for use of the implicit formulation is in 

coordinate systems having a singularity. Polar cylindrical coordinates is a good 

example and will be considered briefly. The method also generalizes easily to 

r-8-z systems since the z coordinate is particularly easy to treat and Cartesian 

systems, x-y and x-y^z, are even simpler. Figure u shows an appropriate r-9 

grid whose major difference from Fig. 2 is the ncn-staggering of meshes in 0. 
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A MESH FOR POLAR 
COORDINATES 

Figure 11. An r-0 mesh for the implicit 
integration of Maxwell's Equations. No- 
tice the interchange of 6 and z coordinates 
radially relative to the CYLRAD Mesh. 
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This added complication is removed because a fast Fourier transform of (B-l) and 

(B-2) in 6 is to be performed to decouple the radial variation from the azimuthal 

variation.    This transform allows derivatives in 9 to be taken analytically in 

m-space and does not couple adjacent m values.    The TE (E    , B    , B„) and TM (B , 

E ,EQ) equations therefore become tridiagonal systems in r for each 9 harmonic 

labelled by m. 

To pursue this in greater detail, consider the following difference-operator 

definitions (assuming their use in m-space for 9 ->r. riatlons): 

CV)p(i*).rIÖSl£lül 

(V  Y)B(i,m) = 9 ■ Ml) 

,     (r +A (i) - r "A (i-1))      ^ 
(v. 

(yA)rM» r^VAz(i), 

ft  (A  (l)  -A (i-1)) 
(v-.xAUi.m) • -8   -*- -4 

•D-syel 6r 

(^xA)z(i,m) -     1^ ~V 5J ^Ar(l)J ' 

rr.+ Y(i+l)-2r   T (i)+r " I (i-ljl    _2 

7»T(l,m)-i-U £ i J-*hr*(i) • 
i L J      i 

(B-4) 

(B-5) 

(B-6) 

(B-T) 

(B-8) 

(B-9) 

(B-10) 

where the radial factors are defined as 

r     = (i-1) or 

r4    5    (i-3/2) 6r , (B-ll) 

r±" = (i-2) 6r . 
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Here "m" can be replaced by any particular finite difference analogue, say 

s*nj% 6 9>    for the 9 derivative if desired. 

When these definitions are substituted into (B-l) and (B-2), the following 

two systems of tridiagonal finite-difference equations are obtained 

Br(t+6t,i) - j"Br(t,i) - ^ /^xE(t)\(i)J - ^Ez(t+6t,i), 

B9(t+6t,i) - Lrt.i) - 5|£.  /vDxE(t)V(i)l 

+ IS (Ez(t+6t,i)  - Ez(t+6t,i-l) j , 

Es(t+6t,i) »|"Ez(t,i) + ^/^xBCtjVci)  - imötJ 1 

27^ [ 5r J t^12-1 

§^F   imB  (t+6t,i) 2r.T r'        ' 

for Transverse Electric modes arid 

E r (t+6t,i) - |"Br(t,i) + f|yB(t)l(i) - tn6wl 

+ 1^   im Bz(t+6t,i), 

Ee(t+6t,i) -    Ee(t,i) + ^JvBxB(t)Je(i)  - l*n6tJe 

_ §¥"   f BE(*+*t,i) - Bz(t+6t,i-l) j , 
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Bs(tf6t,i) = rB2(t,i)-^/vE(t)^(i)j 

"2r7[ 6r J (B-13) 

+ ||V  l»Er(t+6t,i) 

for Transverse Magnetic nodes. In both the TE and the TM cases the equations 

to be solved can be reduced to a single scalar tridiagonal system. For example, 

in Eqs. (B-12) for TE radiation, the equations for B (t+6t,i) and Be(t+6t,i) 

can be substituted into the equation for E (t+6t,i). Once the resultant scalar 

equation is solved, B (t+6t,i) and Bg(t+6t,i) can be found explicitly by sub- 

stitution. This algorithm has the disadvantage of requiring Fourier transforms, 

in 9, of all the field variables. Longer tiae steps can be taken, however. This 

algorithm also suffers in that the dielectric matrix technique mentioned earlier 

and discussed in Appendix C can only be used in axially symmetric configure'.ions. 

There is the compensation that Fourier smoothing techniques can be applied iu 8 

and somewhat coarser 6 resolutions can be allowed than would be possible using 

an unsBoothed finite-difference approach. 

In 3D cylindrical and in 2D and 3D Cartesian coordinates similar equations 

are obtained. In each case the implicit equations can be solved directly with- 

out iteration by Fourier transforming in all but one of the dimensions and then 

solving the resultant scalar tridiagonal equation t> a two-sweep Gaussian reduc- 

tion as used in the CYIMD Poisson solver. 

The Fourier harmonics labelled by k in the z direction and by m in the 8 

direction can be treated "exactly" in the following sense: The sin2 terms on 

the right hand side of Eq. (B-3) get replaced by the corresponding analytic 

derivatives. Thus, if Fourier analysis were use- for both the x and the y 

derivatives in Eq. (B-3), one would have (for Cartesit a coordinates) 
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*^  .   ^ +     .,   +       a (B-lfc) 

The only dispersion remaining arises fron the finite timestep used in the integra- 

tion. This result suggests a fully dispersionless integration of the Maxwell 

Equations in Cartesian systems where Fourier analysis is possible in all direc- 

tions. Bather than using a finite difference integration in time, giving rise 

to a dispersion relation like Eq. (B-lU), the correct dispersion relation 

<tP =  c2(k 2 + k 2) x   y (B-lb) 

can be used to advance the phase of each of the Fourier harmonics analytically. 

When this is done, no numerical dispersion is present, only the aliasing which 

occurs because a finite discrete representation of an essentially continuous 

system cannot be avoided. This method of dispersionless integration would allow 

much more accurate treatment of short wavelengths and would permit much longer 

runs with strong phase coherence of waves in systems where (ß-15) applies. 

The treatment of the plasma sources would be somewhat more complicated than 

indicated above in Eq. (B-15) and would involve the charge-current con- 

siderations mentioned earlier in connection with the CYIÄU) algorithm. These 

problems are all handled quite easily and accurately in k-space however. One 

such problem arises in the form of a numerical inaccuracy because the source 

£(t+6t/2) will be assumed constant over a timestep when advancing the amplitude 

and phase of the (k ,k } mode. The (k ,k ) component of £ must actually be re- 

[iufk k ) 6t/2i 
- x> y.   . J *° reauce *M" inaccuracy. This is 
i)(k ,k ) 6t/2 x' y 

1   fit just the factor by which   xpl       J 

of the current at the center of the timestep. 

e"iMtdt differs fron J..  e"1*51'2, the value 
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Appendix C - Spatially Varying Dielectrics 

The general purpose Maxwell Equation solver discussed in Section II can be 

generalized very 3imply to include the presence of a spaliaily varying dielectric. 

The properties of this dielectric medium are assumed to be time and frequency 

independent. The pertinent Maxwell Equations become 

ÖD* 
^  - eVDxB - fciTj , (C-l) 

ÖB 
■gj-  ■ -e YD x [ D/€ ] , and (C-2) 

*D* £ w . (c-3) 

The superscript * in Eq. (C-l) indicates that the D* contains, in principle, error 

components in the longitudinal field due to discrepancies between p and J as 

discussed in detail in Sections II, IV, and in Appendix A. These error components 

can still be eliminated using the Poisson Equation arising from (C-3), as before, 

with simple boundary conditions on 60, regardless of the spatial distribution of 

dielectric, e(r,z). In CYLRAD the quantity l/c(r,z) is stored in a matrix 

defined at the 6 mesh of Fig. 2. The values of — on the other meshes are found 

by interpolation from the stored values when needed. 

The term D/C is found by a multiply inside the difference operator 7 x and 

thus v_ • B_ ■ 0 is still assured. Furthermore D, (longitudinal) arises only 

from J,, as required by physics although_D (transverse) can arise in part from 

J, through coupling caused by the l/c term in Eq. (C-2). The usual boundary 

conditions E continuous, 0 continuous, at a dielectric interface with no 

surface charge are also preserved in the staggered leapfrog solution of the 

finite-difference Maxwell Equations. Thus a very complicated elliptic boundary 
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value problem is solved in an essentially simple manner by solving the causal, 

hyperbolic, time-dependent physical equations. 

The quantity_pA is the electric field, of course. When E is not contin- 

uous across a dielectric interface, the curl of E_ is also non-zero so a burst 

of radiation is emitted through time variation of ti.e magnetic field. This 

source of öß/öt turns off when the boundary condition is satisfied. The method 

is sufficiently flexible to allow perfectly-conducting metallic boundary condi- 

tions to be simulated. By setting l/c * 0 in some region, the electric fields 

in that region are brought to zero. The longitudinal displacement B  does not 

even see these complicated c-metal regions, however, so a very sfmple set of 

boundary conditions is retained for the Foisson Equation and the difference- 

formula integration. The importance of being able to solve the wave equations 

with arbitrary dielectric media in the calculation cannot be overstated. Very 

complicated problems become easily tractable. Cherenkov ladiation of particles 

traveling through dielectric media at velocities faster than the light velocity 

in the medium c&n be studied in a detailed way for quite general dielectric- 

particle configurations. Complicated dielectric wave guide and transformer 

problems become tractable. Most important of all is the ability to treat radi- 

ation and plasma in fairly arbitrary metallic containers. 

When e approaches infinity in a dielectric, the medium imitates metallic 

behavior because the polarization charge becomes almost totally free to move 

and therefore moves as would the equivalent conduction charges in a metal. If 

a point charge is imbedded in an f-metal, for instance, the "metal" polarizes 

and all the charge from the point particle appears at the surface of the c-metal 

region since E_ is zero inside. Further, since the equilibrium E must be con- 

tinuous across the €-metal bounding surface, and since E_ is zero inside, the 
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electric field leaving the f-metal will become perpendicular to the surface when 

aU the radiation fields from initial transients have been damped away. This 

means that very complex electrostatic problems, as well as time-dependent electro- 

magnetic problems can be solved quite trivially by CYLRAD. 

The equations can undoubtedly also be generalized to treat problems where 

a spatially varying n(r,z), the permeability, is included. In many cases it 

may be necessary, in fact, to run the entire problem with a false value of p. 

in order to scale the electric and magnetic fields in a convenient way so that 

the scale length c/iu  and \     = V ./<»     will not be too disparate. An equi- 

valent way of looking at this is to rescale c or to decouple the electrostatic 

and electromagnetic masses of the particle. 
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Bit-Poshing and Distribution-Pushing Techniques 
for die Solution of the Vlasov Equation* 

K. R. Symoi», D. Marshall, and K. W. Li 
Department of Physics 
University of Wisconsin 

Madison, Wisconsin 

ABSTRACT 

In a bit-pushing program a plasma is simulated by manipulating a pattern 

of bits in the computer memory representing the pattern of particles in phase 

space. The method is analyzed and compared with conventional particle- 

pushing techniques. In a distribution-pushing program the particle distribu- 

tion function is modified according to the leap-frog equations of motion for 

the particles. Algorithm«are developed for accuracy and efficiency. Sample 

results of both kinds of programs are presented. Results are presented from 

a one and one half dimensional distribution pushing program simulating a plasma 

beam emerging from a circular hole. 

Work supported by the Atomic Energy Commission. 
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Techniques for Solution of Vlaaov Equation 

I. INTRODUCTION 

In this paper we present two approaches to the computer simulation of 

plasaas which have been investigated as ways of economizing on memory storage 

space and tin» required for the solution. In order to illustrate the method, 

we will consider primarily one dimensional problems. Programs utilizing these 

methods for one and one half and two dimensional problems are under development. 

We wish to find the behavior of a system of particles of a single species 

moving according to the equations: 

where x., v. are the coordinate and velocity of the jth particle and the 

acceleration is given by 

a(x.) - a (x ) ♦ E K(x.-x.), (2) 

where K(x) is the force (per unit mass) between two particles a distance x 

apart, and where a (x) is the acceleration due to the externally applied 

force, if any, on a particle at position x. The force kernel K(x) may have 

various forms depending upon the particular problem to be simulated. Typical 

examples are shown in Pig. 1. For the case of a Coulomb force between plane 
K K JC 
I      o2       d, 
—— -JUT- 

o 

JZZ 
(a) (b) (c 

Fig. 1. Forms for the force kernel K(x). 
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■ charged sheets, the kernel has the form shown in Fig. 1(a), where a  is the 

charge density per unit area and u is the mass density per unit area. If we 

take the charged sheets to have a finite thickness d, then the abrupt step 

becomes modified as shown in Fig. 1(b); this is also the form for the force 

kernel associated with the cloud in cell model in one dimension. If we are 

dealing with & beam of particles of finite cross-section, the kernel will 

have the form shown in Fig. 1(c), where the force falls off at large distances 
2 

as 1/x if the beam is in empty space, and falls off exponentially if the beam 

is confined between conducting walls. We will assume that the plasma is con- 

tained within a length L along the x-axis, -!jL < x < %l. We will take 

periodic boundary conditions, that is we will assume that for every particle 

in this interval there is an identical particle at the same relative point 

in every other interval of length L along the x-axis. For this reason it 

will usually be convenient to choose a kernel of the form 1(c) for which the 

force between two particles falls to zero before they reach a distance L apart. 

The energy integral for the above equations is 

E • Z */ ♦ Z V (x ) ♦   Z 
j     7       j   J   all pairs 

- . >~-, V (Xi-Xs) (3) 

where the external and pair potential energies are given by 

x 

Ve(x) - - J ae(x) dx, 

x 

-J K(x) dx. vpW 

(4) 

(5) 

If we use the coulomb kernel 1(a) for a large number of charge sheets distri- 

buted with a density tc(x) per unit length, then the electric field is given by 
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fiw-ff K(x-x') (c(x'J dx', (6) 

and we can show that the third term on the right in Eq. (3) reduces to the 

usual formula for the electrostatic potential energy: 

[( K(XMX') V (X-X') dxdx' = f >SEoC?00 dx 

The Vlasov equation corresponding to this problem is 

»"«♦•«*••. 

w a(x) = a (x) +   K(x-x') f(x',v') dx'dv'. 

(7) 

(8) 

(9) 

The linear dispersion relation for waves of wave number k, frequency w is 

readily shown to be 

where g(v) is the unperturbed velocity distribution, 

funperturbed M - **M. f t(v)d» - 1. 

where tc is the number of particles per unit length along x, and where 

\2- "V 

(10) 

(11) 

(12) 

We have assumed that the kernel K(x) is an odd function of x and have expanded 

it in a Fourier series: 

K(x) *   I 2K.   sin kx . (13) 
k*2irn/L    K 

For the coulomb kernel l(aj for plain sheets, kK.  has the constant value 

kKfc - oVLueo, (14) 
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and (jj.   is independent of k and is just equal to the plasma frequency 

2        2 2 2 Ujj   ■ uL   a WJ /ue& ■ ne /mto. (15) 

For finite thickness sheets, the Fourier coefficients of the kernel have the 

value (14) for long wavelengths, but approach zero for wave lengths shorter 

than the thickness d. For the kernel 1(c), the quantity kK. falls to zero 

for both long and short wavelengths; we nay in this case define tlw plasma 

frequency by the formula (12) for the value of k for which kK. is a maximum. 

Throughout this paper we will assume that the motion of the particles 

may be computed by using the standard leap-frog algoridm. Ne divide the time 

axis into intervals T according to 

tn * nT. (16) 

The positions x are to be calculated at integer time points t , and the 

velocities v at half integer time points. The leap-frog advancement algorithm 

is then 

Yn^'YnW' 

j,n*l * xjn + vj,W' 

(17) 

II. BIT-PUSHING PROGRAMS 

Let us divide the fundamental period I along the x axis into J intervals 

each of length h, (L » Jh^. Let us likewise choose a maximum and minimum 

velocity v  , v. which are relevant to a particular problem, and let us 

divide the interval (v  - v . ) into I intervals each of length g, 

(v  - v . ■ Ig). The intervals h and g are to be chosen sufficiently 

small so that they represent the maximum precision with which we care to 
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specify the positions and velocities of the particles. The phase space for 

the problem is now divided up into IJ cells. We may locate any particle by 

specifying the cell in which its position and velocity are located. Con- 

versely, we may describe the particle distribution by specifying the cells 

which are occupied by particles. 

In a bit-pushing program, a rectangular array of IJ bits is reserved in 

the aeaory, each bit correlated with a cell in the rectangular phase space. 

A cell which is occupied by a particle is denoted by a one bit. A zero bit 

denotes an unoccupied cell. This pattern of bits is then pushed according 

to the leap-frog algorithm« (17). At a half-integer time step, each row 

corresponding to a particular velocity is advanced in the x direction by an 

appropriate increment VT. At an integer time step, each column corresponding 

to a particular position is advanced in the velocity direction by an increment 

aT. Some time can be saved in the computation by utilizing the fact that at 

a given time step all bits in a given row or column are advanced at the same 

time and by the same number of intervals. Even more time could be saved in 

a computer whose logic is well suited to pattern manipulation. Since the same 

J intervals along the x-axis are used in calculating the acceleration field, 

no interpolation or area weighting is required. 

We have found it convenient to align words in the phase-space memory 

bank along the velocity direction. That is, a complete word corresponds to 

a group of phase cells having different velocities at a single position x. 

The velocity increments at an integer time step can then be accomplished 

simply by a series of shifts. Pushing a row in the x direction at a half- 

integer time step requires an individual examination and manipulation of each 

bit on present computers. Such an examination is in any case required to 
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perform the SUM appearing in Eq. (2) for the self field. In order to facili- 

tate the calculation of this SUB, we store in a linear array of J words the 

number of particles in each x interval (the density). When a row is to be 

shifted at the half-intepcr time step, we scan along the row, noting those 

poi its at which th-sre is a change from a zero to a one or froa a one to a zero 

bit. The appropriate succeeding bits are corrected and at the saae tiae the 

corresponding densities are corrected. Thus if we encounter a sequence of 

empty or full cells we need make no changes until we come to the end of the 

sequence. At each half-integer or integer tine step the increment VT or ax 

is calculated according to the algorithm (17) and rounded off to the nearest 

integer number of position intervals h or velocity intervals g, for each row 

to be moved. If the round is unbiased and if the remainder is discarded, a 

random error of h/»"F or g//~"8 (rms) is made in the position or velocity at 

each half-integer or integer time step. This error can be reduced by 

accumulating the rounded off remainders for each row and column and adding 

the accumulated remainders to the calculated increments at the next time step. 

A particle which stays in a given row at a particular velocity then suffers 

no net position error during successive position increments until it is shifted 

to another velocity row, whereupon it suffers an rms position increment h//S~. 

This procedure reduces the round-off error considerably in those cases where 

increments in position or velocity per time step are of the order of or less 

than one interval h or g. There is little improvement when the increments are 

many intervals per time step. 

A similar scheme has been used by Miller and Prendergast in the simulation 

of many-body problems in galactic astronomy. Miller and Prendergast avoid the 

round-off error by choosing position, velocity, and time increments so that 
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gr • h. All position increments are tlfen integral multiples of h# Miller and 

Prendergast quantize the forces so that at is always an integer Multiple of «g. 

The round-off error then effectively appears only in the quantization of the 

force. This procedure seems to place very severe restrictions on the choice 

of parameters unless a very large number of phase cells is used. 

A little reflection will show that the following theorem is true: 

Theorem. A bit-pushing program with J » V  position intervals 

and 1-2 velocity intervals is precisely equivalent and will 

give identical results to a conventional particle-pushing 

program in which the positions and velocities of the particles 

are stored as fixed-point numbers of i and j bits respectively. 

If the same round-off procedures are used in both cases for the 

position and velocity increments, then the round-off errors will 

also be the same. 

If floating point numbers are used for the positions and velocities in the 

particle-pushing code then the equivalence is not precise, but it is still 

very close if the numbers of significant bits in the position and velocity 

are j and i. If we assume that the precisions j and i in position and velocity 

may be freely chosen, then once they are chosen and once the number of 

particles has been chosen, it is entirely a matter of economy in memory space 

and in computing time whether we choose to push bits or to push particles. 

The number of memory bits required to store the particle distribution in 

a bit-pushing program is 

V"2'*3- (18) 

The number required to store the same information in the corresponding particle- 

pushing program is 

N  * N (i*j ), (19) 
PP   P  J 
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where N   is the number of particles.    So far as memory space is concerned, 

the bit-pushing prograa Mill be sure economical than the particle-pushing 

prograa when the ratio 

N N 
(20) 

is greater than one. Bit-pushing programs are generally run with a mean 

particle density per phase cell N/2**J of the order of 1/3 or 1/4, and 

with i ♦ j of the order of IS to 20. Under these conditions, the bit-pushing 

program is evidently more efficient, as might be expected. Conversely, 

particle-pushing programs are normally run with i + j of the order of 50 and 

12 
with N of the order 2  or more. Under these conditions, the particle-pushing 

program is more efficient, and a bit-pushing program would be out of the question. 

We are also interested in comparing the economy of time. The relative 

computing time for the two programs depends rather sensitively upon the 

computer which is used, and in particular upon the machine-language vocabulary 

which is available. One might imagine an ideally flexible computer in which 

computing time would be strictly proportional to the number of bits to be 

manipulated. Although this ideal is not very closely approximated with existing 

computers we will confine our comparison of the two programs to the number of 

memory bits which must be reserved in each case, and assume that the computing 

tin<es required will be at least roughly proportional. 

Let us imagine an ideal computer in which the word length is entirely 

flexible. For a given total storage capacity N  in a particle-pushing 

program, we are then free to trade off the word lengths i and j against the 

number N of particles to be followed. In most computers this trade off can 

in fact to a considerable extent be made by using word packing techniques.  We 

may then ask the question, for a particular problem to be simulated, what is 
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the optimum trade-off among these parr .meters.    If we could answer this question, 

we could then compare the numbers N     and N.     to determine for the optimum 

case whether a bit-pushing or a particle-pushing program would be more 

efficient.    Unfortunately, we 60 not as yet have any satisfactory answer to 

this question.    The following paragraph presents a preliminary approach. 

Let us consider a problem in which the relevant phase space is divided 

up into 2   * cells,  (see Fig. 2).    Let us assume that the smallest relevant 

phase element for the problem to be simulated, that is the size of the smallest 

bundle of particles to be distinguished, is a rectangle of dimensions £v.    Let 

the entire phase rectangle be divided into k£ elements of area £v, where 

max v .    = kv. min (21) 

Let the total time period during which the system is to be followed be T = nx. 

If an unbiased round is used for the position and velocity increments and if 

the remainders are discarded, the rms error in position and velocity of a 

particle at the end of the calculation due to round-off errors will be 

Ov = hn'V/T, o. - gnH/<T6. (22) 

max «• 
t I I I I 1 

v .   • min 

Fig.  2. Relevant element in phase space. 
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Hie number of bits in the phase eleaent £v Mist then be at least 

Cv/hg > si/ 6, (23) 

if round-off is not to carry a particle out of the eleaent £v    If the 

minimum relevant particle density is f_s_, and if we wish to determine this 

density to within an ras fractional error ' , then the minimum nuaber of 

particles in the phase eleaent must be 

5vf-iB - 1/P . (24) 

Let the ratio of the aean overall phase density f to tKe Minimum phase density 

b<s 

Rl ' "W 
The minimum number of particles which must be followed is then 

Np = kl Rj/p
2. 

If the ratio of the maximum to the mean phase density is 

R, = f     /f, 2       max'   ' 

(25) 

(26) 

(27) 

then the maximum number of phase cells in a phase element £v must be at least 

Cv/hg > Cvf^ - RjR2/p2. (28) 

We have then for the required number of phase cells, depending upon whether 

we take the limit given by equation (23) or (28)   (whichever is greater), 

>1+J 
kftn/ 6, for (23), or 

kfcRjR2/p ,  for (28). 

Correspondingly, the ratio (20) is given by 

(29) 
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n i4lAn, (kin/ 6 ), for (23), or 
np^ (30) 

P 
J-in2 (kiR^/p2), for (28). 

If for example we choose p * 1/8, R. * R. = 2, k ■ i. = 8, n * 256, then 

Eq.  (28) is the appropriate limit, and we find N   /N.     * 7, so that the bit 

pushing algorithijwould appear to be more efficient in this case.    For these 

parameters, we find 5v/hg » 256, 21+J ■ 16,384, i » j = ?, N■ 8, 192.    As 

the number of time steps to be computed increases, the limit (23) will 

eventually prevail, and we can then see from formula (30) that for a sufficiently 

large number of time steps the particle-pus.iing program eventually wins out. 

The reader may enter his own numbers and juggle the formulas. 

Some preliminary observations of the two stream instability have been 
2 

made with the bit pusher.      The Coulomb kernel   (Fig.   la) was used.    The phase 

space was 216 x 216 bits square, for a length of 38 X_.    A total of 15,500 

particles, approximately one third of the number of cells, were used.    The 

length of the runs was 9.6 T , where T   = 2mn "  .    In Fig.  3a, b, and c we 
P      P    P 

shew total and potential energy vs time for three different time steps, 

approximately 0.1 T , 0.05 T , and 0.025 T . These runs were made on a univac 

1108, using approximately one, one and one half, and two minutes of computing 

time, respectively, not including time to output results. 

Initially all phase cells in velocity rows ±19 to iS4 were filled, to 

give two uniform rectangular beams, and rots ±18 were half filled randomly to 

provide a spatial density perturbation of 1.3t. For the large time step, 

note the oscillation in total energy. This has an amplitude of M% of the 

total energy, or ^20% of the variations in potential energy. The oscillation 
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2 
is caused by truncation error, and its amplitude is proportional to T . As 

the tine step is reduced, he oscillation disappears and a steady growth in 

total energy appears. This growth is due to increasing round-off errors, 

and is proportional to the number of time steps. The round-off also causes 

an apparent damping of the nonlinear oscillations, for the smallest time step. 

As the round-off errors accumulate, the potential energy is reduced due to a 

"smearing" of the density. At the same time, "smearing" in velocity space 

causes the kinetic energy to increase. The sum of these two effects appears 

as a growth in total energy. The time step 0.05 T represents the best compro- 

mise between truncation and round-off errors. 

Methods of removing the order T truncation error are now being investi- 

gated. If this error were removed, a larger time step could be used, 

resulting in further reduction of round-off errors, 

III.  DISTRIBUTION-PUSHING ALGORITHMS 

Let us assume that for a particf'ar problem to be simulated, the leap- 

frog algorith" (17) with an appropriately chosen time step has adequate accuracy. 

Let us then replace the actual system of particles moving according to F.qs. (1) 

by a system of leap-frogging particles moving according to Lqs. (17). The 

Vlasov equations describing the behavior of a system of leap-frogging particles 

are 

fn+i.(x>v) = fn(x,v-an(x)T), 

(31) 

Wx'v) = WX'VT>V)' 

where a(x) is given by Eq. (9j ind the subscript refers to the time (liq. (16)). 
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Ne have now separated the problem of discretizing the time, a problem which 

is presumably reason.. Sly in hand and need receive no further consideration 

in the present treatmen, from the problem of following a very large number 

of particles which is still with us in Eqs. (31) and which is by no means so 

well in hand. We assume then that if we can find a satisfactory way of 

solving Eqs. (31), the result will be a satisfactory solution of the Vlasov 

Eq. (8) corresponding to the differential equations (1). 

In order to find a computer simulation method for Eqs. (31), we must 

first choose a way of specifying the distribution function f(x,v) by means 

of some finite set of numbers which can be stored in the computer. Ne assume 

that a set of parameters has been chosen suited to the problem to be simulated, 

the number of parameters being large enough to specify in adequate detail the 

distribution function f(x,v), and small enough to be stored in the computer 

4 
memory (10 words for example). We assume further that a rule is given where- 

by to any particular set of values of these parameters, there corresponds a 

specified function f(x,v). As an example, a suitable set of basis functions 

may be chosen in terms of which to expand the function f(x,v), and the coef- 

4 
ficients of perhaps 10 terms in this expansion may be taken as the parameters 

to be stored. Since a complete set will contain an infinite number of basis 

functions, in order to specify uniquely the function f(x,v), it will be 

4 
necessary in addition to give some termination rule whereby from the 10 given 

coefficients the remaining coefficients in the expansion may be determined. A 

common rule, though not a necessary one, is simply to truncate the series, 

that is, to specify that the remaining coefficients are to be taken as zero. 

4 
A second method of choosing the paiameters is to set up a grid of perhaps 10 

points in the x,v phase space anH to choose as the parameters to be specified 
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the values of the function f at these grid points. Again the function f(x,v) 

is not uniquely specified by these values until we have given an interpolation 

rule which specifies the function at all points in the phase space. Note that 

we are requiring that a specific function f(x,v) be uniquely specified by a 

particular set of values of the parameters chosen. Since there are only a 

finite number of parameters, the set of functions which may be so specified 

will by no means include all possible functions, or even all continuous or 

analytic functioi.s, but will be instead a particular family of functions 

specifiable by the given finite set of parameters according to the given rule. 

A function belonging to this set we wiil call a representable function. 

Although not every possible distribution function is representable, if the 

method of representation has been well chosen, then presumably for any dis- 

tribution function f(x,v) whicii might occur in the problem to be simulated 

there is a representable function which is sufficiently close to it, in the 

sense that the two functions would lead to the same present and future behavior 

of the system so far as the phenomena to be studied are concerned and within 

the required accuracy.  It is in this sense that we have required that the 

representation method chosen be suitable to the problem to be simulated. 

Since a satisfactory experiment must produce repeatable results, and 

since the number of parameters which would need to be controlled in an experi- 

mental situation in order to repeat the experiment is probably considerably 

less than the information storage capacity of a modern computer, wc may at 

least hope that suitable methods of representation in the above sense can 

indeed be found. This plausibility argument is not an existence proof; it 

might for example turn out that in order to know whether two distribution 

functions are sufficiently close to be represented by the same representable 
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function, we Mould need already to have solved the simulation prahlen. In 

any case it would seen that the method we are suggesting provides a very great 

degree of flexibility. It even includes the particle-pushing methods, since 

one possible choice of parameters would be to choose, either at randan or 

otherwise, a finite sample of the particles in the system to be followed and 

to specify the positions and velocities of this set of particles. The dis- 

tribution function could then be defined by regarding these at any given 

moment as a random (or otherwise) sample in the set of all particles. From 

this point of view, particle-pushing does not appear to be very efficient, 

since because of statistical fluctuations the precision with which we can 

define the distribution function is considerably less than if we used the 

sime number of parameters in ai> expansion schene or an interpolation scheme 

between grid points. 

Let us assume that at a particular time t we have stored the values of r n 

a set of parameters which specify then a particular distribution function 

f (x,v). The first of Eqs. (31) then specifies uniquely the distribution 

function which follows at tine t ■ . Unfortunately, if f (x,v) is a repre- 

sentable function, then in general f . (x,v) is not necessarily also repre- 

sentable. It is possible to find representation schemes in which the second 

of Eqs. (31) leads fron one repvesentable function to another, but it is 

alnost certainly impossible to find a representation scheme in which each of 

these equations leads fro« one representable function to another. Me do not 

know of a proof of this impossibility, ' ut it is clear that if such a repre- 

sentation scheme exists, then we can find exact solutions of Eqs. (31) valid 

for all times, an unlikely piece of good luck except for very specialized 

problems. We are f»ced therefore with the problen of choosing a suitable 
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«presentable function with which to replace the function given at any par- 

ticular time step by the formulas (31). If the representation we have chosen 

is suitable in the sense defined above, then it should be possible to find a 

suitable replacement rule. Either of Eqs. (31), together with a replacement 

rule, will lead to an advancement algorithm for converting the parameter values 

at a given time to the parameter values at a time % later. The best replace- 

ment rule will be some sort of compromise between the requirements of accuracy 

and speed of computation. 

It is just in the replacement rule that an approximation enters into the 

distribution-pushing schemes. (Recall that we have already disposed of the 

approximation involved in the 1 er - frog algorithm itself). Note however that 

the approximation is one whiüi is completely within our control. Equation 

(31) tells us precisely wt.at the new distribution function should be. The 

replacement rule tells us with precisely what function we have r placed it. 

We therefore know at each time step precisely what error we have made in the 

distribution function. If, for example, we require that the replacement rule 

be such that it at least preserves the total number of particles, then the 

representable replacement distribution may be obtained from the correct dis- 

tribution given by Eq. (31) by moving each particle from its position in the 

latter distribution to its position in the former. (The set of particle dis- 

placements required is of course not uniquely determined, but there is presumably 

a set of displacements for which the rms displacement is a minimum.) We may 

then say that the particles in the distribution-pushing algorithm move according 

to the Eqs. (31) but in addition suffer at each time step a small error displace- 

ment. The characteristics of the error displacements can be determined by 
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studying the replacement rule. One night try to Minimize the ras error dis- 

placement in choosing the replacement rules, although this goal seems to lead 

.n practice to rather formidable algebraic problems. Alternatively, one may 

place certain plausible physical requirements and certain convenient computa- 

tional requirements on the replacement rule, sufficient to determine the 

advancement algorithm. 

It has been the authors' admittedly somewhat limited experience that 

the numerical analytic methods of developing difference equations fcr approxi- 

mating the Vlasov equation (8) lead to errors whose physical nature and con- 

sequences are often difficult to determine, although of course the magnitude 

of the errors at any given time step is known. In contrast, our experience 

with the development of algorithm* following the distribution-pushing philosophy 

has been that one usually has considerable physical insight into the nature 

of the approximations being made. We have indeed had very few surprises; 

methods which we predicted in advance would have unacceptable errors indeed 

turned out to have such errors, and more important, methods in which these 

errors were supposed to have been removed indeed turned out to produce satis- 

factory results. A study of the replacement problem, or of the representation 

problem which preceeds it, usually leads to an insight into the nature of the 

errors involved in any given procedure and into ways in which these errors can 

be reduced. We will give an example below. 

It can be shown t it the grid interpolation schemes and series expansion 

schemes are essentially the same in the following sense. Given on the one hand 

any set of N grid points in the phase plane and an interpolation rule which 

defines the function f<x,v) everywhere in terms of its values at these N grid 

points, and given on the other hand a set of basis functions in terms of which 
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• function f(x,v) can be expanded, we can find a corresponding termination 

rule which tells us, given N coefficients in the series, how to find the 

regaining coefficients. The correspondence is such that the set of «pre- 

sentable functions is the sane in both cases. The choice between the two 

aethods is then a natter of aathemtical and computational convenience. In 

this paper we will confine ourselves primarily to grid interpolation repre- 

sentation schemes. Although acre general grid arrangements are under study 

and have advantages for many kinds of problems, wc will confine ourselves 

here to rectangular grids of points. Let us take a rectangular array of N»IJ 

grid points located at the positions given by all combinations of the following 

values 

x. ■ jh. j » 1 J, 

vi * Vmin * ig' * = '  '• [S2) 

v   » v .  ♦ (I ♦ l)g . max   am       " 

We will take the system to be periodic in x with period L = Jh, and we will 

assume that the distribution function vanishes for v > v^^ and for v < v^. 

We now show that it is possible to treat separately the interpolation 

problem for x and for v, and still achieve a fairly high degree of accuracy. 

Let us assume that we have an interpolation mle in x which defines the 

function f(x,ig) on the horizontal grid lines in the phase space. (See Fig. 4), 

 1 • 

Fig. 4.  Vlvancement shears the phase space. 

89 



Symon, Marshall, and Li 

Let us further assume that we have found a suitable advancement algorithm for 

the second of Eqs. (31) or. the horizontal grid lines, so that we can represent 

precisely, or at any rate with sufficient accuracy for our purpose, the function 

f(x - ihT ,ih) for any value of i. Let us further assume that we are inter- 

polating linearly in v between the horizontal grid lines. The effect of the 

second of Eqs. (31) is to produce a linear horizontal shear in the phase 

space. The points marked o in Pig. 4 which were initially in the same vertical 

line, one at v = ig, the other one at v = (i + l)g, will after the shear be 

on the same horizontal line but displaced in x by an amount ah, where 

a = gi/h. (33) 

Consider now the point marked + in Fig. 4 on the line joining the two points 

o at v = (i ♦ ß)g. The correct value of f at this point after the shear is 

to be linearly interpolated between the values f.. and f. at the two points 

o. This value will be replaced by a value linearly interpolated between the 

points directly above and below the point + on the two horizontal grid lines. 

The error in this process is readily calculated to be 

Af corr   repl • o6(l - B)h ^(fi+1-V (34) 

where we have kept only the linear term in a Taylor series for f(x) along 

the two horizontal grid lines about the points o.  If we average the above 

result assuming that 8 is equally likely to be any -vhcre between zero and one, 

we find 

If a is not too large, say a < *i,  then the error is less than or of the order 

of 5* of the difference between the function values at adjacent grid points and 

90 



Technique» for Solution of Vlaaov Equation 

is therefore presumably of the saae order of Magnitude as the error involved 

in replacing a physical distribution function by a linearly interpolated 

function, a replacement which we have assuaed above is suitable. It is 

furthermore worth noting that the error (35) vanishes if integrated horizon- 

tally along any horizontal line or if integrated vertically along a vertical 

line in the phase space. Therefore the distribution in x, ( f(x,v)dv), and the 

distribution in v, ( f(x,v)dx), are not affected by the error. In particular, 

neither the kinetic energy nor the acceleration fields nor the potential 

energy are affected by this error. Although the above result was derived 

assuming a linear interpolation in v, it is presumably correct in order of 

magnitude for any reasonable interpolation rule in v. A similar argument 

applies to the replacement problem associated with the first of Eqs. (31). 

Ne therefore direct our attention to the problem of finding suitable replace- 

ment algorithm for functions of a single variable x or v. He should keep in 

mind however that the Taylor series in x used in the derivation of Eq. (34) 

is not generally valid for typical interpolation rules on x, so that the 

result expressed by Eq. (35) is only an estimate of the error. Furthermore 

the difference between this estimate and the true error will not in general 

have the property that its integral along a line parallel to either the x- 

or the v-axis vanishes. 

Let the period L along the x-axis be divided into sub-intervals of length 

h according to the first of Eqs. (32). Let an interpolation rule be given for 

finding a function f(x) when its values at the grid points are given. Ne 

define the interpolation function G(x) as the function obtained fro» the piven 

interpolation rule when the function values are specified to be f. ■ 6. . As 

Fig. 5. Interpolation function for linear interpolation. 
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an example, we show in Fig. 5 the interpolation function for linear interpola- 

tion. Any interpolated function f(x) can be written in the for» 

f(x) - I f.G(x - jh). 
j-l 3 

(36) 

If f(x) passes through the values f. at the grid points, the function G(x) 

will have to have the property 

G(jh) * 6. . (37) 
jo 

It is usually desirable that the interpolation procedure be such that it 

yields a horizontal straight line when all the function values f. are equal. 

This entails the condition 

Z G(x - jh) « 1. (38) 

In view of the periodicity requirement, the function f nay be Fourier 

analyzed: 

The Fourier coefficients are given by 

.      r 2-nilx 
F(«V 

(39) 

(40) 

where G, is the Fourier coefficient of G(x) defined by 

>jJh 

Wf G(x)e       Jh   dx, 
-Wh 

(41) 

and F is the Fourier point transform of the function values f.: 

2ititj 

F. - i I   f. e 
1     Jj-1 J 

(42) 
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ftl) 
f. »     Z 

J     JU-ftJ) 

2iiii 

Fte 

»a 
(43) 

The function F is periodic in I with period J, so that we may restrict 

the values of I to lie within a single period, say froa -%3*1  to hJ  if J 

is even, and froa -V*h to 'jJ-'s if J is odd. This is the meaning of the 

parentheses around y in Eq. (43). The parentheses around the subscript t 

in Eq. (40) remind us that the coefficient F... is periodic in I,  although 

the coefficient G is not. We see that instead of defining the function 

f(x) by giving its J values at the grid points and interpolating between 

using the function G(x), we could alternatively define f(x) by giving J of 

its Fourier coefficients F , and then using Eq. (40) to provide all of the 

remaining Fourier coefficients. We thus see that any interpolation ile on 

a mesh is equivalent to a rule (40) for terminating a Fourier series, in the 

sense that both yield the same set of representable functions. 

The moments 

f(n) - j   x"f(x)dx 

of an interpolated f(x) are given by the formula 

(44) 

Jo fc-'MOi G       J(Jh) {y (45) 

where Gl ' is the nth moment of the interpolation function, defined also as 

in Eq. (44). It will be useful to record here the moments of the interpola- 

tion function for linear interpolation shown in Fig. S: 

G<°> . n, G(1> - 0. G<2> . h2/6. (46) 
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For purposes of illustration, let us consider the simplest possible 

approach to the replacement problem. Let us assume that we are using linear 

interpolation and that we wish to find a replacement rule for the function 

fc(x) = f(x - ah), 

where we may assume |ot| < h,  since if a is an integer, we may make the 

replacement exactly, simply by setting 

(47) 

f . = f.    . (48) cj        j-o 

A simple way to obtain a replacement rule would be to set 

frj  = fc(jh)  = f(jh - oh), (49) 

so that the interpolated replacement function f (x) coincides at the grid 

points with the correct function f (x) which it is supposed to replace. 

It is a simple matter to calculate f . from Eq. (49). If a is positive, 

the result is 

f . = (l-a)f. ♦ af. .. (50) 

The function f (x) is certainly not equal to the function f (x) which it 

replaces. For example, wc show in Fig. 6 a sketch of the situation for 

the case when f(x) » G(x) and a = 1/3. One can readily verify that the 

Fig. 6. Spreading of f(x) with two-point advancement algorism. 
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-wroth and first moments of the function f (x) agree with those of f (x), 

so that thi total number of particles and their mean positions in the two 

distributions are the same.    The second morents are however 

fc
(2) - I x2f(x-ah)dx - i (x*oh)2f(x)dx 

- f« ♦ 2ahf(1) ♦ «VfW (51) 

- h^Ca2 ♦ £) If. ♦ 2aljf. ♦ £i2f.3, 

(2) 

) ) J 

h3[(a*±) If. ♦ 2oTjf. ♦ Ej2f.l 
6   i3 j    J     i     } 

(52) 

The difference is 

Af m . tm . tm . a(l.a)hs. (55) 

If we assuae a is equally likely to have any value between 0 and S, the 

average difference is 

<Af(2)> - h3/12 . (54) 

Since the difference is positive the replacement distribution Is more spread 

out than the correct distribution f (x), is  is also evident from Fig. 6. 

According to our previous discussion, the distribution-pushing advance- 

ment algorithm for the second of Eqs. (31) requires us to displace horizontally 

the function f(x,ig) along each horizontal grid line by an amount ah ■ VT * igt. 

For each grid line, we use the rule (48) to displace the function by an amount 

equal to the nearest integer to a, and then use the replacement rule (50) to 

displace the function by the fractional part of a. We follow a öiwilar 
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procedure to obtain the algorida for the first of Eqs. (31) by displacing 

the distribution function along the vertical grid lines. Equation (54) then 

tells us that the resulting algorithm is equivalent to Moving each particle 

according to the leap-frog equations and subjecting it in addition to a 

random walk at each time step of ras step h/«T7 in the x direction and g/JTT 

in the v direction. Such a random walk leads to an unacceptable spreading 

of the distribution function for a reasonable number of time steps unless the 

grid spacings are taken unreasonably small. 

Since the effect results from the way we are solving the Vlasov equations 

(31), and not from the self-field calculation (Eq. (9)), we may study it by 

studying a system of particles subject only to an external force field a , 

without any interaction between them. As an example, we have used the above 

described advancement algorithm to find the distribution function for an 

ensemble of harmonic oscillators.  A grid of IJ * 91 x 91 mesh points was 

taken. The numbers were so chosen that the orbits in phase space are circles, 

with 60 tine steps required for one complete cycle. The initial distribution 

funccion at t ■ 0 was taken to be zero at every grid point except the point 

A « 0, v > 30 g. where it had the value 42 (per cell gh). The results after 

15, 30 and 60 time steps are shown in Figs. 7a, 7b and 7c. At each grid point, 

we print the nearest integer value to f,., except that if f.. < 0.1, we do not 

print anything. As predicted, the distribution function spreads out rapidly. 

Already after IS time steps the maximum value has dropped from 42 to 3. The 

distribution after that continues to spread, but more slowly, in proportion 

to the square root of the time. Th; center of mass of the distribution moves 

correctly around the circle. We offer our apologies for the fact that the 

function values are printed sideways on the graphs. It is perhaps too severe 

a test to start with a single non zero function value f..; in Fig. 8 we show 
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the initial and final distribution in spatial density after a coaplete cycle 

for an initial distribution dist.ihuted uniformly over a rectangle in the 

phase space of area 17 h x 5 g.    The spreading is still «acceptably large. 

In order to reduce the spreading, let us seek a replaceaent rule for 

the function f (*)  in Eq.  (47) which preserves also the second noaent.    Ne 

will also generalize the interpolation scheae by requiring only that 

G<°> . h, G(1) - 0. G<2> m aV (55) 

where o   is same matter, which for linear interpolation is 1/6.    Let the 

replacement rule be 

frj ' £ 'ifj-r f56> 

where the sun over 4 mist contain at least 3 tens if we are to preserve 3 

aoaents.    The condition that the zeroth and first Moments be preserved in the 

replaceaent is readily shown to be 

Etat * 1, (57) 

ltUt - a. (58) 

These conditions are evidently satisfied by the simple replaceaent rule (SO). 

The second moments are calculated in a manner similar to those in Eqs.  (51) 

and (52), and are 

f (2) - h3[(a2 ♦ o2)If. ♦ 2<tfjf. «  Ij2f.3, (59) 
c j i      i  )    i    i 

f (2) - h3[(a2Ea, ♦ It2a.) Zt. ♦ 2««, l)f. ♦ J*t^
2f,] 

r tlJ*jJ       t   * J    '      t *j     ' 
(60) 

• h'CfO2 ♦ It2a,)If. ♦ 2aEjf. ♦ ZJ2f.]. 
»     l j i i   J      i     i 
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where in the last line we have used Eqs.  (57) and (58).    The condition that 

Eqs.   (59) and (60) agree i>- that 

I Ä2a. = a2. (61) 

Note that tl is condition is independent of the choice of interpolation function! 

An algorithm satisfying Eqs. (57), (58) and (61) will preserve the moments of 

the distribution function through the second regardless of the interpolation 

scheme used. If a non-uniform spacing of grid points is used, then it is no 

longer true that the advancement algorithm is independent of the interpolation 

rule. A small term depending on the interpolation rule also appears if we 

take into account both the x and v dependence of f(x,v) in working out the 

advancement algorithm. 

A similar result applies if we require that higher moments be preserved. 

It does not appear to us however that there is any particular advantage in 

preserving the higher moments. Rather it seems to as that it is desirable 

to use as few terms as possible in the replacement rule (56). This not only 

shortens the computations, but it means that changes in the distribution 

function at a certain point are affected only by its n^irest neighbors at any 

given time step. If our only object is economy in memory space (and tiire), 

then it would seem that we would want to use as large a grid spacing as 

possible. This means that the grid spacing will be of the order of or per- 

haps somewhat smaller than the smallest identifiable group of particles in 

the phase space. With ««ch a large grid spacing, it docs not seem plausible 

that either the interpolation scheme or the advancement ilgoritta near a given 

grid point should reach very far from that grid point. If we then keep only 

the three terms I •  -1. 0, 1, Eqs. (57), (58) and (61) have the solutions 
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a0 * 1 - « , 

ax = !sa(l + a), 

a_l s -^u - °0- 

(62) 

Note that the replacement rule given by Eqs. (62) guarantees the pre- 

servation of the moments of the distribution function through the second 

no matter what the values of f. may be. This means that this advancement 

rule, starting from any interpolated distribution function f(x) in Eq. (47), 

does very much more than simply preserve the first three moments' of f (x). 

For we may resolve the original function f(x) in any fashion into a sum of 

component interpolated functions, and our advancement rule guarantees that 

the component replacement functions each have the proper first three moments. 

In this sense, we may say that this replacement rule preserves the number of 

particles, the mean position, and the rms spread of every component part of 

the distribution f (x). If we develop an advancement algorjthn for the Vlasov 

equations (31) based on the replacement coefficients (62), then whatever the 

errors introduced in the distribution in each time step, they cannot corres- 

pond to an independent random walk of each particle in the distribution, 

since the rms steps in such a walk would have to be zero. Instead, the error 

displacements of the particles at each step are correlated in such a way that 

although the new distribution is not quite the same as the old, its mean and 

standard deviation, and indeed the means and standard deviations of each 

component part, are preserved. 

It is evident from Eqs. (62) that except in the special cases a ■ 0, 

l 1, at least one of the three coefficients w'll be negative. This means 

that it is possible, starting from positive values of all x., to arrive at 
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negative values of some of the f .. The function f (x) will then not be a 

true distribution function. This is perhaps not surprising, since we have 

legislated that the second moment shall not increase under the replacement, 

and in fact shall remain constant even under repeated displacements. Yet 

it is evident that if we start from a distribution function which has only 

one nonzero f., then unless the advancement algorithn (56) contains only one 

term, the replacement functions obtained by repeated application of the rule 

(56) will contain a region of nonzero values which increases in size linearly 

with the number of repetitions of the advancement. In the case of the rule 

(62), the distribution of nonzero values spreads out one interval h in each 

direction at each advancement. The replacement algorithm (62) neatly avoids 

increasing the second moment of the distribution by inserting negative values 

f . on the wings of the distribution. The negative values occur only on the 

edges of the distribution function and are small except when there are abrupt 

changes in the function f(x). The appearance of negative values can be 

avoided altogether if certain restrictions can be placed on the initial dis- 

tribution function. In particular it is sufficient, though by no means 

necessary, to require that the functim values f. at neighboring grid points 

never differ by a factor more than e. (The factor could be as large as 5.8). 

There is of course no guarantee that if we start with a distribution function 

which meets this requirement, the advancement algorithm will never lead to a 

function for which it fails. In practice we have found with a program using 

a three point advancement algorithm for the VlaiovEqs. (31) based on the 

replacement rule (62) (with always |a| < ij), that if we start with such a 

distribution then only a few very small negative values f.. ever arise. 
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It is interesting to note that if we use parabolic interpolation, then 

the above replacement rule leads to a function f(x) which coincides with the 

correct function f (x) at the grid points. In parabolic interpolation, we 

interpolate the function out to h on either side of a given grid point by 

passing a parabola through that grid point and the two neighboring points. 

The resulting function is in general discontinuous at the cid points. The 

interpolation function is shown in Fig. 9. Figure 9 makes it clear why the above 

replacement algorithm can give negative values for f ,, since with parabolic 

interpolation the original interpolated f(x) itself can have negative values 

even though none of the function values f. is negative. It is not difficult 

to determine conditions on the function values f. so that parabolic interpo- 

lation does not lead to negative values. It is in this way that we arrived 

at the conditions under which the replacement rule (62) does not lead to 

negative values. We emphasize again that we may use the replacement rule (62) 

with any interpolation procedure. 

-3h ■2h 

G(x) 

/\ 

-h 2h 
-l-x 

3h 

Fig. 9. Interpolation function for parabolic interpolation. 
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In Figs. 10a, b, c, and d we show the results of a calculation for the 

motion of an ensemble of harmonic oscillators using a distribution-pushing 

advancement algorithm based on Vie replacement rule (62). The problem is 

the same as that shown in Fig. 7 except that the initial distribution shown 

in Fin. 10a is tapered exponentially away from the central grid point at 

x * 0, v * 30 g, where it has its maximum value 9. Figures 10b, c, and d then 

show the resulting distributions after 15, 30, and 60 time steps. It will be 

seen that the spread in the distribution is very slight. The dots in the 

figure represent negative function values between -0.1 and -0.5. (For larger 

negative values, our program prints a minus sign.) Figure 11 shows a com- 

parison of the initial and final distributions in x after one complete cycle, 

for a rectangular distribution similar to  that shown in Fig. 8, except that 

the distribution at the edges is tapered down exponentially. We conclude 

from these results that this three-point distribution-pushing algorithm can 

give satisfactory results. 

Encouraged by these results, we set up a program of this type to solve 

the Vlasov equation with an acceleration field kernel of the form shown in 

Fig. lc. We chose the opposite sign to that shown in Fig. lc so as to provide 

an attractive force to simulate the negative mass instability. The usual 

stability conditions, linear growth rates, and nonlinear bunching now are 

observed. Contour plots of the density in phase space are shown in Fig. 12. 

Figure 12a shows the initial distribution in the phase space consisting in a 

beam with a sinusoidal density perturbation. Figures 12b, c, d, and e show 

the results after 10, 20, 30 and SO time steps. A striking feature, particularly 

of the later plots, to one who is used to seeing results from particle-pushing 

programs, is the uniformity of the three vortices which develop. The initial 
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perturbation is purely sinusoidal and contains three periods in the length L. 

The result after 50 tine steps shows three well developed identical vortices. 

The identity of these vortices even down to the finest details is a sympton 

of the lack of statistical noise in a distribution-pushing program in con- 

twt to that which results from a particle-pushing program. 

The mesh used in this calculation was 61 velocity grid points by 100 

position grid points.   The time step was such that gr/h =0.1.    The beam has 

a rectangular velocity distribution with tapered edges, of width equal to 12 

mesh units in the velocity direction plus a sinusoidal perturbation of 

amplitude 2 mesh units.   The total time to do the calculations shown was 

three minutes on a CDC 3600, or about 1/3 of the time required by a bit- 

pushing program to do this same problem (with essentially the same results). 

It is of interest to ask whether an interpolation rule e/ists for which 

the translated function f (x) in Eq.  (47) is itself representabl's.   This 

question is easily answered if we go to a representation by Fouriei series. 

If f(x) is given by Eq.  (39), then the Fourier coefficients of the translated 

function (47) are 2-nila 

If J coefficients F, are given, (say -**J < I < *jJ) and a termination rule is 

given which determines the rest, we require that the same rule determine also 

the remaining coefficients F ,. This can be true for all a only if the rule 

is that all the other coefficients vanisn (except for 4 ■ -*iJ if J is even). 

The set of functions whose Fourier transform has only j non-vanishing coef- 

ficients goes over into itself under the translation (47). We see from 

Eq. (40) that the transform G of the corresponding interpolation function 

has exactly J non-vanishing coefficients. Any such function G(x) inserted in 
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Eq.  (36) defines the sane set of representable functions.    If we require 

that f(jh) » f., then Eqs.  (39) and (43) show that F, « F^ and 

Gft = 1 if |A| 5>jJ. G- = 0 otherwise 

The required interpolation function is therefore 

rfvi =   sinprx/h) 
G(x) " J sinfrx/Jh) 

For an infinite period, Jh ■* °°, this approaches the familiar function 

G(x) . sin^h) f 

which provides an interpolation rule on an infinite interval which gives a 

set of representable functions which goes into itself under translations. We 

have experimented with the use of this kind of interpolation rule, but it does 

not seem to offer any decided advantages. 

IV. A ONE AND ONE-HALF DIMENSIONAL PROBLEM 

As a final example, we present briefly the results of a simulation of a 

l*s dimensional problem using the distribution-pushing algorlth» described in 

the previous section.  The problem was suggested by an experiment conducted 

by C. Stallings.  In the experiment a beam of plasma is shot from a gun 

through a hole in a plate as shown in Fig. 13. The electrostatic potential 

is measured as a function of the radius r from the axis, and the distance z 

from the hole. Rather complicated oscillations in potential are observed 

as a function of z and of r. In order to simulate this problem, we assume 

that ions coming out of the hole form a fi.xed uniform positive charge density 

in a cylinder of radius R (the hole radius). Ne assume that the electrons all 
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have the same z-component of velocity, so that z ■ v t and we may use 

either z  or t as independent variable. We assume also that the wave lengths 

of oscillations in the z direction are much greater than R, so that the 

potential can be calculated as for a uniform infinitely long cylinder. Each 

electron is then described by four coordinates and momenta r, f, 6, p„, which 

are functions of the time t, or alternatively of the coordinate z. If we 

assume circular symmetry, then the distribution function f (r, f, p ) will be 
9 

independent of 6 and the angular momentum p. is a constant of the motion. 
9 

We choose M fixed values of the angular momentum.  (In our case M = 9). 

For each angular momentum, we write the appropriate Vlasov Eqs. (31) in the 

r, f space using the correct equations of motion for the radius r corresponding 

to that particular angular momentum. The charge density as a function of r 

is then calculated by integrating numerically over f and p„. From the den- 

sities the electric fields can be calculated which go into the equations of 

motion, as well as the electrostatic potential for purposes of comparison with 

measured values. 

We start initially with a uniform spatial density of electrons out to 

the radius R of the hole, and with a Maxwellian distribution in velocity 

space: 

mi2   Pe 

(6S) 

where n is the initial electron density per unit volume within the cylinder 
o * 

and we have normalized the distribution so that the number of particles per 

unit length is 

*0(r. *. Pe) drdrdpe - wR nQ. (64) 
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After the bean travels away fron the hole in the plate it will oscillate in 

radius and the velocity distributions nay nüt remain Maxwellian, An examina- 

tion of the distribution (63) will show that if we desire to choose a minimum 

number N of values of p., then the choice of values must be very carefully 

made, if we are to be able to represent reasonably well the Maxwellian form 

over a significant range of radii. The solution to this problem is perhaps 

of some interest and we will therefore give the details in the next paragraph. 

Let us assume that we wish to choose a sequence of values of p. so that 

we can represent the final exponential factor in Eq. (63) about equally well 

at all radii. At a given radius r a typical value of p. which is important 

in the exponent is 

P0*r0(2mkT) (65) 

For values of pfl much smaller than p the exponential function is essentially 

unity, and for values of p. much larger than p the exponential function is 

very small. It is evid> it that the detail with which we can represent the 

Maxwellian function for this particular value r « r is determined by the 

relative spacings Apg/p0 cf the values of p„ in the neighborhood of p . In 

order to represent the distribution equally well at all values of r, we 

should therefore choose a geometrical progression of values for p.: 

- r,J Or (66) 
'j   ' ^o 

where p. are the chosen sequence of values for p., n is a numerical factor, 

and j is an integer which for the moment we allow to range over all positive 

and negative values. In practice we found that we could choose n « 2 and 

still represent the Maxwellian distribution with sufficient accuracy so that 

integrals over pfl calculated by the algoridmi we are about to develop are 
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accurate to about 0.1%.    In order to develop an algorithm for Integrating a 

distribution function over p«,  let us put 

Pe " ?„•*' 

where 

n = eP, 

so that 

P e *o 
M 

If f(p„) is a distribution function, then we have 
8 

f f(pe)dPe " | f{poefr)flpoefrdy. 

(67) 

(68) 

(69) 

(70) 

Now the integrand on the right is known at integer values of y, as we see 

by comparing Eqs. (67) and (69). It can be shown that the best possible 

integration formula for integrals extending over the entire y-axis where 

the integrand is known at equally spaced values of y, and provided nothing 

else is known about the integrand, is no better than a simple summation of 

the values of the integrand at the given points. We therefore have the 

following algorithm for the desired integral: 

i 
f(P6)dpe 

a P0 An n I n f j. (71) 

Since the initial distribution extends out only to r - R, the values f. 

will be negligibly small for values of j for which p. is larger than about 

twice the value given by Eq.  (65) for r   ■ R.    We may therefore set the 

upper limit of the sum at this value of j.   We choose for p   a value given 
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by Eq. (65) with r about one half the smallest value of r of interest. We 

assuae that the function f(fu) for pu < p can be fitted with sufficient 

accuracy'by a parabola passing through the values f and f, at p and p,. 

This assumption allows us to calculate the values f. for j negative. The 

sum over negative j in Eq. (71) can then be evaluated. The resulting 

formula is 

r n f -nf, 
*(Pe)«Jpe « P0 *•* n    _} 

M-l 
♦ z n3f 

(n-i)(n"-i)  o i 
(72) 

We have found that with n ■ 2 and with M = 9, and with the Gaussian dis- 

tribution (63), the formula (72) gives results accurate to about 0.1%. 
.9 

The simulation program was run for 300 time steps of 2 x 10  sec 

12 -3 
each. The initial electron density was 4 x 10  a  giving a plasma frequency 

8   -1 o) * 1.124 x 10 sec   The temperature was 2 eV, giving a Oebye length 

6.44 cm. The hole radius R - 1.25 cm. We show in Fig. 14a and b the 

calculated charged densities as functions of time at two different positions 

ami in Fig. 14c the potential as a function of time at one radial position. 

The potential variations are of the same order and roughly similar to those 

measmmad, except that the measured variations are not so regularly sinusoidal. 

The measured frequency of the oscillations in density in Fig. 14a is 0.53% 

less than the plasma frequency! Tut amplitude of the oscillations in radius 

of the electron beam is abont 2 Debye lengths. 

The calculations were carried out with a grid of 100 x 31 grid points in 

each of the nine r, r phase spaces. The time required for the computation of 

380 time steps as shown in Fig. 14 was 22 minutes on a UNIVAC 1108. 
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TUP.      «1 *.¥. 

nmn-uoi 

TOM K »"" SECOND 

Fig.  14a.   Charge density in cylindrical beam at 0. 6 cm radius. 

TWI Bf 10*" SECOND 

Fig.  14b.   Charge density at 1. 5 cm radius. 

\/W^ 
TEMP.      .11.». 

■ 0.« CM 

MM» 

TIME > I«'1 SECOND 

Fig.  14c.   Potential at 0.6 cm ra lius. 
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A Self-Consistent Electromagnetic Particle Code 

I. Haber, C. E. Wagner, J. P. Boris, and J. M. Dawson 
Naval Research Laboratory 

Washington, D.C. 

I. INTRODUCTION 

In computer simulations of plasmas, difficulties often arise in 

properly modeling physical problems. Plasmas in the physical world have 

large system sizes with large numbers of particles having disparate 

masses. Here many phenomena are assumed decoupled due to the widely 

diffaring time and length scales characteristic of these physical para- 

meters. In a simulation model, due to the finite size and speed of present- 

day computers, it is often necessary to choose time and length scales 

which are not as widely varied as those encountered in the physical world. 

However, our understanding of the physics is greatly facilitated if all of 

the physically decoupled phenomena under investigation remain decoupled in 

our computer model. 

In particular for particles oi differing masses moving in the presence 

of electromagnetic fields, the electrostatic phenomena tend to scale as 
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the square root of mass ratio while the magnetic phenomena scale directly 

as the mass ratio. It is, therefore, often desirable in a computer code 

to follow ion trajectories in the electrostatic approximation (large ion 

Larmor radius) while following the detailed electron behavior due to the 

electric and magnetic fields. This can be accomplished by decoupling the 

electrostatic and electromagnetic mass of the ions. The Lorentz law 

equation of motion, 

dV _ qg  +  qV xB 
cFE   m      m c 

e      m 

can be solved with the magnetic mass m »m . The limit m -*• is ° me m 
particularly interesting, for example. 

A aimilar circumstance exists when the magnetic pressure becomes 

comparable to the particle pressure    (ß*l).    We would like to follow 

the effects of the self-consistent magnetic fields.    However, for system 

parameters amenable to computer simulations, the presence of the radiation 

fields causes unnecessary complications.    For reasonable numerical ratios 

of electrostatic to electromagnetic energies, one finds an unphysieal 

buildup of the radiation fields via bremsstrahlung.    In a periodic code 

the radiation eventually reaches an energy balance with the particle 

kinetic energies. 

The code described here follows the orbits of simulation particles in 

their self-consistent electric and magnetic fields, but neglects the trans- 

verse displacement current term of Ampere's Law.    The ratio of 
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electromagnetic to electrostatic fields my then be adjusted by changing 

the constant c in Maxwell's equations without a corresponding change in 

the radiated fields. By Baking c small, a large number of magnetic Debye 

lengths (c/tti  ) can fit into a reasonable length system and the cede can 

be used to examine, from a particle viewpoint, problems such as Alfven 

and magnetocoustic interactions which are often vie "A as essentially 

fluid in character. The code can therefore be used to examine the effects 

of particle behavior in problems such as the electromagnetic collisionless 

shock. 

This model of the electromagnetic-particle interaction has been 

treated theoretically for a long time and is often called Darwin's model. 

Because the complicated retardation effects of the electromagnetic fields 

are absent, the model is naturally attractive for plasma simulation. Pre- 
2 

vious computational approaches haw been applied to the sheet model and 

3 k 
to simplified configuations where the canonical momentum is strictly 

conserved. The present paper extends the Darwin model to a one-dimensional, 

finite-sised particle model where external magnetic fields destroy the con- 

servation of the canonical momenta. A priori it would seem more physical 

and therefore advantageous, to solve the particle equations of motion 

directly. It can be show by arguments of numerical analysis, however, 

that direct solution of the momentum equation by the usual methods leads 

to violent numerical instabilities. These numerical instabilities have 

their root in the physical fact that retardation exists in reality. The 
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removal of retardation adds extra constraints to the notion because the 

degrees of freedom in the electromagnetic field have been removed.   When 

the transverse displacement current is retained,    it can be shown by 

numerical analysis that the same algorithm, generalized, is stable. 

The algorithms presented here integrate the Darwin model by solving 

an evolution equation for the no-longer-constant canonical momenta. 

This method involves the solution of a relatively complicated, implicit, 

coupled Heimholtz equation for the components of the vector potential. 

In this way the pathology of an unstable initial-value problem in time is 

converted to a two-point boundary-value problem with pathologies sf its 

own.    These problems are resolved, however, by relatively standard 

techniques. 

II.    DEFINING EQUATIONS 

Introducing the standard vector and scalar potentials    and invoking 

the Cojlomb Gage, 

? «Ä = 0, (1) 

Maxwell's equations jay be written (in Giussian Units) 

v^        =       -'•TTO     , (?) 

ft - -L Ü.   = -itfj. (3) 
c?    öt* c     * 
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where J. is the transverse current whose divergence is zero. The actual 

field quantities are then derived from the potentials as: 

B    =   Vxl+B 

E    =   -v4> 

ext 

1    ÖÄ 
c   TT~ (5) 

where the externally applied magnetic field has been separated for 

convenience. 

ot2 

In a one-dimensional system    (   <       =  —«—   =   0), neglecting the 

term in Eq. 3, the equations to be solved are then: 

ox2 
-h TIP  , (6) 

and 

-4 TTj 

ÖX2 

The equation of motion of the i'th particle is: 

(7) 

dvt 
ar Ji  (f + ^  xB) (8) 

Since the system is one dimensional, it is convenient to treat the x- 

direction and the tiansverse (y,z) directions differently. This equation 

of motion may be written in terms of the potentials as: 
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dVxi I!*      M    £+  !L   v   4    x   B        t-^_V  4 in       Ox m.c      il lext     m.c    il 

0Ä 

ox (9) 

and 

dVii 
-3F- 

ll   _ _ li   _ q-i    - 
rn^c Vii   x   Bxext    

+  m^c \ixBiext " rn^c ^Vxi v) Ä 
A      (10) 

If we define the canonical momentum of the i'th particle in the 

transverse direction, 

?ii       =   Vii     + 4"   \   ' 
them 

TT 
«I     dVii 
m.c       dt c      Ot c 

(11) 

and Eq.  (10) may be rewritten as: 

^H        - - 

= r ^u xBx + V„       x B , ) (12) 
ext 

The external perpendicular field, B 

"i   W 

, could be included in the vector 
"ext 

potential, if desired, but since the total convective derivative of P 
il 

vanishes when the external magnetic fields are zero it is more convenient 

not to co ao. Second, notice that the canonical momenta in y and z are 

coupled by the externally applied field B   because V . = P .  a.A . 

by Eq. (11). "~ mi = ~miC 

131 



Haber, Wagner, Boris, and Dawaon 

III.    maCRICAL ALGORITHM 

Figure 1 diagrams the time advancement of the various quantities. 

All particle and field quantities are defined at integral time steps 

except for the x-components of tbe particle velocities which are defined 

at staggered, half-integral, time.    If ve assume that all quantities prior 

to and including t   are known, the advancement of the particles proceeds 

as follows:   Using the accelerating fields at tn we may leapfrog V       to V 0 M     J* 
This enables us to advance the particles to their nw positions 

at t . The scalar potential at t may now be found directly by accumulating 

the charge density of the particles and then solving Poisaon's equation. 

However, finding the vector potential at t is somewhat more involved. 
l 

Since both the new velocities and new «wmenta are unknown, it requires an 

Implicit solution for the particle momenta and the current at the new time t . 
l 

Let us write the time evolution of momentum Eq. (12) in a finite 

difference form using the time definitions illustrated in Figure 1. 

j.i 
=   P 

qi vt 
it, (V+^o) x  fxext + V X   B xext 

«i vt 
ii. 

ii. 

l 2m, 2m. c     I X   B. 
(15) 

xext 

X   B, xext + v. xi. X   B lext 

Equation (13) can be svamed over all particles in the system and solved 

for   P   .   , and Ä"    , in terms of the known quantities P.  , V    , 7L, B    .. ii l I»     Zi     u     exc 
ii °       t 
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VJ»»I X»!/2 

Pxo 
rXI/2 
i 

J  

XI 

X. 

trf ** 
U8t 

TIME 

Fig. 1 - Time advancement of field and particle quantities 
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For illustration let us consider first the simple case where B  . ■ 0. 

Here the momenta in the y and z directions uncouple and we are left with two 

scalar equations rather than a vector one. In this case equation (lj) reduces 

to 

1iA*  _ 
p    m     p   + _±   V    X  B (lk) rii1   

rxi0  e    xii   °iext u ; 

Multiplying (1*0 hy — and recalling the definition of P. (Eq. 11) we obtain 
mi 1 

q.SAt 

E'lV^V   Aj-ii     "       ^ mi    Pxio +        m.c     Vxil 
i 1ii i10!1 * 

X B 
■Lext (15) 

The right side of (15) now contains only known terms. 

Making use of v2^ 

we obtain 

IHTJ 

ÖA. kvq. 1    _V    —i- 0x2      " *->    m. c2 
i        i 

^ ra.c lc 
i J 

-   4VAt   V .    X B     +      (16) 

which is of the form. 

1^-   -    Ka(x)A(x)    -    S(x) (16a) 

Where the definitions of ^(x) and S(x) may be seen from (l6). The numerical 

method used in solving (loa) is explained in detail in Section V. 
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When Bxext * ° by a»»in sunBlin« °ver the particles we obtain an equati« 

analogous to Eq.  (*S) 0f the fom. 

***,      __     W^ 
öxs --¥ 

?~'?y- (VM'S sy i\.. 'I-ST8 

[fe(-^)J 
(17) 

+ 4^ ,^(va^(^^)',v 

0X2 

where now 

This equation is of the form. 

-"Cap* -    (?(x) Ä(x) - T(x) x Ä(x) S(x) 

*w" Z *\) 
species 
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V*     »2 (x) n. 

where 0_ 

species 

q B At 4"m q2 
„, 2 ,  ^£_  and S(x) is the ri ht side Qf 
ps        •» 

S S 
Equation (17) which contains known quantities only. The quantities K2^), 

T(x), and S(x) are all computed from known cell quantities which are accumu- 

lated during a pass through the particle table. Boundary conditions and the 

numerical solution of this vector equations are discussed in the next sections. 

Once the vector potential is determined at the new time tls the magnetic 

fields may be determined from it by fast-Fourier transforms or simply from 

the numerical derivative of the vector potential. 

To complete the loop the individual particle momenta may now be updated 

by solving Equation (12) implicitly for P . since V  may be written in 
X1i     A1.i 

terms of P . and A . which is now known. 

The full calculation may be seen schematically in Figure 2. Starting 

with an initial ensemble of positions and momenta, the velocities are accumu- 

lated to give a current matrix and equation (7) is solved to find the vector 

potential. From the velocities and vector potentials, the cannonical momenta 

are calculated and all the quantities are now known prior to entering the loop 

which advances the system in time. 

By accumulating the > tide densities and velocities over a matrix of 

cells, assigning each quantity to the nearest grid point, the density and 

current in each species and the quantities needed for the dipole approximation 

solution to the electric fields are obtained. 
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INITIALIZATION 

MOVE 

PARTICLES 

>r 
ACCUMULATE 

CELL 

QUANTITIES 
i . 

DIAGNOSTICS 

t i 
" 

UPDATE 

PARTICLE 

MOMENTA 

COMPUTE 

VECTOR 

POTENTIAL 

< k 
'' 

COMPUTE 

FIE LDS 

Fig. 2 - Flow diagram 
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The vector potential is found from the accumulated quantities in the 

transverse direction by the method discussed in Section V and the magnetic 

field B is found from the numerical derivative of the vector potential. The 

electric field is calculated from the dipole approximation of the charge 

density using fast Fourier transforms. The transformed fields are multiplied 

by a form factor to give Gaussian shaped particles and thereby reduce the 

7 
collision frequency and anomalous heating. 

Though we have used an implicit algorithm to find the vector potential 

from the particle momenta, the actual particle momenta have not yet been 

changed. Using the known fields Equation (13) can now be used to find the 

new momenta. 

The particle x-velocities are then updated using the calculated electric 

and magnetic fields and the new positions are calculated to close the loop. 

It is important to note that though the momentum updating, particle 

moving, and cell quantity accumulations are shown as three separate steps 

all three can be performed on each particle sequentially. That is, all the 

particle quantities can be calculated in one loop. This means that if the 

particles are stored on a slow external device, only one pass through the 

particles is required, and efficient use can be made of whatever fast 

storage is available to store the field quantities. Furthermore, it is worth 

noting that the code is fully time centered and reversible. 
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IV.  BOUNDARY CONDITIONS 

When applying the algorithm presented to a physical problem, it is 

necessary to specify a well-posed set of boundary conditions on both the 

scalar and vector potentials. The effect of these boundary conditions on 

the physics under investigation should be recognized and understood. 

For many problems of physical interest, i.e., those having no net 

charge buildup, no net momentum, and no net transverse current, it is often 

reasonable to impose periodic boundary conditions. However, if the system 

develops a net transverse current or charge, naive imposition of a particu- 

lar boundary condition can lead to non-physical behavior. 

For example, if a net transverse current develops, imposition of 

periodicity at system ends amounts to providing a return current at the ends. 

There is an ambiguity about specification of the return current. Even if it 

is decided to provide a return current at the ends of the system, the magnetic 

field is only specified to within a constant. 

Consider the fields due to one sheet of current. The jump in magnetic 

field across the charge is the only thing specified. If the current sheet 

were between conducting walls at the ends of the system, the fields would 

depend on the end distance from each wall. If the simulation of an infinite 

system is desired, however, this same approach would be undesirable. As the 

charge moves toward either wall, the field would be compressed; that is, the 

system is not translation invariant as one would desire in an infinite system. 
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We can, therefore, consider the behavior imposed on a sheet charge in an 

invariant system as shown in Figure h. 

Figure 3 

As v2 A  ■ _ lmj/c is second order, two constraints are needed to 

specify the potential. The value of the indeterminate constant may be rea- 

sonably chosen, such that the fields on opposite sides of the current sheet 

are equal and opposite. Thus one condition is 

f <v+ S <v ■ ° • (18) 

If the current element is moved from side to side, it can be seen that 

A(XjJ + A(xL) " constant.    If A(») is chosen to be zero in the absence of 

transverse current, the second condition becomes 

A(xR) + A(xj.) -/     £*£ 
Jx.        c dx 

*(xL) 
ÖX bx 

(19) 
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As a plasma is a superimposition of such current sheets, Equations 

(18) and (19) provide a way of simulating an infinite system without it 

being influenced by the return current. 

In a uniform periodic system, it may not be desirable to specify any 

"end" and a uniform return current may be appropriate. Or, in the simulation 

of a shock problem, it may be appropriate to specify constancy of the upstream 

magnetic field. However, some insensitivity to the boundary conditions occurs 

when a plasma is present since the effect of a return current at the ends is 

usually shielded within a few magnetic Deb/e lengths. 

In any system where ends are imposed, one must also consider what 

happens as particles move off the end. They can be reflected or reintroduced 

with the same or a new seo of velocities at the other end. In such systems 

care must be taken so that the energy change of the algorithm is properly 

monitored if the code \o w conserve energy. 

There are certainly other well-posed sets of boundary conditions. The 

brief discussion here is not intended to be exhaustive. It does indicate, 

however, the nature of the problems which must be considered in some of the 

more important classes of problems and that care is sometimes in order. 
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V.    SOUJTIOÄ OF THE VECTOR POTENTIAL EQUATION 

When the x-coaponent of the magnetic field is zero, the equations to 

be solved for the y- and z-  components decouple, each being of the form 

(Equation Ik) 

oaA(x) - K8 (x) A(x) = S(x). (20) 
ax- 

where the source term S(x) in the present application has been shown to 

be a sum over particle momenta and the non-negative coefficient K2(x) is 

essentially the plasma density. Problems arise in integrating this equation 

because the two homogeneous solutions of Equation (20) are of an exponential 

character, one right growing (h(x)) and the other left growing (L(x)). These 

two homogeneous solutions, furthermore, do not satisfy the periodic boundary 

conditions required of the complete solution A(x) in an important class of 

problems. 

8 9 
The exponential problem ' becomes serious precisely in the many 

magnetic Debye length case when <K>x  » ,1 for then both R(x) and L(x) will 

exponentiate many times in traversing the system from x = 0 to x =x 
max« 

(where <K> is an average value of K across the system). Since any truncation 

or round-off error in integrating liquation (20) numerically toward either the 

left or the right can be represented as a linear combination of R and L, 

this numerical error will grow by many orders of magnitude compared to the 

actual solution sought when <K^c  » 1. Thus extremely long worJ length ami 

very accurate algorithms would be necessary to permit even a moderate accuracy 

in the desired solution after integrating Equation (20) from x - o to x = x 
max. 
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The exponential problem here is further compounded by the fact that 

S(x) are given as mesh functions, that is <S > for 1 = 1, 2, ..., Hfl, 

where S = S ., and similarly for K2 (x). What is clearly required is a 
i   n+i. 

simple, quick, low-order algorithm which can be used a 1000 to 10,000 times 

without consuming undue computer time. Furthermore, this algorithm must 

give a uniformly accurate solution across the entire grid. The "partial 
a 

Wronskian" method described here gives a way of solving ordinary differ- 

ential equations which exhibit an exponential problem irrespective of 

integration technique. In the present application, a second-order difference 

equation for lAwis solved given {K. f and \sA  for i = 1, 2, ..., H + 1 such 

that A = A„ . . and A' » A'  .. i        n+1    1  n+1 

We write (with &x ■ l) 

A   -(2 + Kj2) ht + Ai+ = St (i=l, 2, .... N) (20a) 

as the set of N difference equations to be solved for the N unknowns Ik. > . 

This is just the usual tridiagonal matrix equation where two additional 

elements in the matrix corners are non-zero due to periodicity. If <K.2> 

were constant or of certain prescribed forms, a cyclic reduction technique 

could be used to solve (20a) both efficiently and accurately. In the present 

case a direct solution by the direct two-sweep elimination method  is 

possible when fixed boundary conditions on /A. \ are given (say A = A . = 0 

to eliminate the corner elements). The periodic solution can be recovered by 

adding to this particular inhomogeneous solution <A .1 a linear combination 

of the exponential (non-periodic) solutions which insure periodicity of the 

derivative (i.e., Ai = A  ) as well as of the function itself. These 
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inhonogeneous solutions |R I and JL.l can be found by integrating the Equation 

(20a) to the right and to the left respectively to minimize the accumulation 

of round-off error from the exponential problem. 

The proposed partial Wronskian method has two advantages, however, 

over the direct two-sweep method. The partial Wronskian method does not 

propagate information concerning the particular solution across the entire 

system and this reduces error accumulation. The operation count is also 

better than for the direct solution of the tridiagonal matrix equation and no 

divides are required. Thus both speed and accuracy are superior. Furthermore, 

the method generalizes quite readily to the fourth-order set of coupled 

second-order equations for the transverse components of the vector potential 

which replaces Equation (üO) when the x-component of the magnetic field is 

non-zero. This problem will be discussed shortly. 

First consider the homogeneous solutions of Equation (20), R(x) and 

L(x). We can write a Wronskian for these two solutions from the differential 

equation 

Vj^U) = R(x)L(x)-R(x)L(x) =1. (21) 

This Wronskian plays the role of the quantum mechanical orthonormality 

condition in the following analysis for, given an arbitrary set of two 

numbers as (A(x), A(X)) at some x, we can use Equation (21) anJ the known 

solutions R(x) and L(x) to find the composition of (A,A) in terms of R and L. 

Thus 

A = a R + bL (22) 

where a » W  and b ■ W . From (21) one can see that W„ - W  s 0. 

145 



Haber, Wagner, Boris, and Daw3on 

Equation (21) is furthermore a global relation in the sense that the 

Wronskian between these two solutions has the value 1 for all x, independent 

of the function K2(x). 

The global condition (21) can be used to eliminate the divides required 

by the two-sweep method while eliminating error propagation.    Consider the 

following algorithm for solving Equation (20).    The result will be equivalent 

to solving the standard difference formulation Equation (20a).    The homoge- 

neous solutions can be determined by integrating (20a) starting with Rj 

and Ri  chosen to approximate the right-growing analytic solution.    Then, using 

a standard leapfrog integration moving to the right, 

Si + I = Ri-* + Ki Ri' 

Ri + 1 = Rl '  Hi + v 

(23) 

R. is an exact solution of the homogeneous difference equation (20a without S) 

for which the round-off error accumulation is negligible. (L.\ can be found 

to the same accuracy by using the same leapfrog algorithm but integrating 

from right to ?eft. We define 

Wi(R,L) = R.L^ - R.'.^ (2U) 

to show that W. , = W.. Then, using {2h)  to advance both JR.) and JL.l it is easy 

Thus the Wronskian is a conserved quantity of the difference as well as the 
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differential equations. Defining A? ,  s Aij.i" Ai as for tne solutions \ 

and L,, the difference equation (20a) becomes 

Ai + i " Ai-4 = si + Kf Ai (25) 

Now define A as a linear combination of the left and right-growing relations 

between the grid points. Thus 

*• + b< h> i + ~ ai + | *i + °i + § ui 

ai-i Ri + bHLi 

hold for i s x <  i + 1 and i-1 s x s i respectively. Since we must have 

A*    = A._ at the grid point i, 

(ai+i _ ai-JJ Ri = " (b^ - VA) (26) 

Using the above expansions in Equation (26) gives 

<*!+* " ai-4> Bi4 = - (bi+* - bi-*> \'-t+ V (27) 

The terms in K? cancel when (Ri+i» ^ux)  is written in terms of (R' ,, L.' , ) 

Solving (27) and (28) gives 

<*!** " aH>= - »iVl« 
(28) 

(bi+t - bi-i) - SiRA" 

Note that W, n 1 under a suitable normalization of L  . Because the 1 nfi 

expansion of A in terms of a and L for one cell can be found from those in a 

neighboring cell by applying Equation (29), a particular solution ikX  can be 

accumulated in two extremely simple sweeps, one from the right to the left 
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accumulating the contribution of R and one from the left to the right for 

the contribution of L.    These two sweeps are accomplished as follows: 

Set B, = c, A   = o, then accumulate using 

*ut = bi-4 + siV 

Ai+i = bi+| Li+i* 
(29a) 

Set a_.i = o, Aj^ given from previous sweep. Then accumulate using 

ai-i = ai+* + SiLi' 

Ai-x = Ai + ai-% *W 
(29b) 

The periodic boundary conditions are satisfied by adding the appropriate 

linear combination of At, I and ihA to the particular solution IA. \ determined 

as above. Similarly some other set of well-posed boundary conditions could be 

so satisfied. 

The extreme simplicity of (29a) and (29b), using as they do the additional 

knowledge that the Wronskian is constant, provide the great speed of the method. 

The symmetry of the method, treating right and left directions equivalently and 

only accumulating the particular solution by sweeping in the direction of 

decrease of the homogeneous solutions provides the accuracy. The contributions 

to the round-off error of the overall solution decay exponentially away in 

both directions using this method. Thus, accumulation or error can occur over 

only a single magnetic Debye length rather than across the entire system. 

This method has an additional advantage. It generalizes quite readily 

to the coupled set of second-order equations for (A (x), A (x)) which arise 
y   z 
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when the externally applied B   field is non-zero.    This coupled equation is 

of the form 

4« K2 (x)   Ä (x) +   T(x) x Ä = S(x) . (30) 

Here f (x) can be an arbitrary function of x but actually has the same 

functional form as Kr in the problem being solved here. We seek a solution, 

in the present circumstances, to the finite difference analogue of (30), 

^••fi + Vi -K2iAi + TiXAi =si (30a) 

The usual double-sweep method now requires solution as 2 x 2 matrix operations 

for each grid point. 

The solution of (30a) is begun by finding the four independent solu- 

tions of the homogeneous difference-equation system.    There are now two right- 

growing and left-growing solutions which we shall label as JR 4W\ 
and \hz  > . These, of course, are found by a leapfrog generalization of 

Equation (23) where the integration is performed in the direction of growth 

for each of the solutions. Actually only two integrations are necessary, one 

from each side, because R„ can be found from R as follows: 
* 1 

R   ~ R    » R     s — Ri. 
2 12 \ y       z        z y 

(3D 

and similarly for 1^,. 

The partial Wronskian is derived from the quantity W. formed in analogy 

with Ecuation (24).    Suppose H   and H   are two solutions of the homogeneous 
1 2 

difference equation (30a) (i.e., any linear combinations of R , R , L and L ). 
12       1 2 
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Then, by dotting (50a) with (H ,   - H J and with (H     - H„), the foUowing 
sat     zz iy     xz 

partial Wronskian relation can be derived: 

W. (H , H )s (H,      H '       - H ' H      ) 
12 Vi   ^i-*     Vi-*   2yi 

(H       H' - H' H      ) = constant. 
*«!    Zzi-i        ^i-i   2ai 

(52) 

This somewhat more complicated "partial Wronskian" takes the place of the 

uncoupled-equation result, Equation (2k).    It is clear then 

Wi(H    5a; ,0 (32a) 

where H is any homogeneous solution. From Equations (5l) it is also clear 
a 

then 

V (R , R ) ■ W.  (L , L ) a 0. 
i 1  2   i   12 

(52b) 

Furthermore, we can choose L  initially so that WJ (R , L ) = 0. This is 
1 ■"■      2      1 

so because we have the freedom to "rotate" the left-growing solutions, determined 

by a single integration and application of Equation (31), and the second half 

of (52b) will still hold true.   A simple normalization of L   then insures that 

VlG , L ) - 1, *i (R2, ZJ = 0. (52c) 

It is then easy to show, that W^R , I ) = 0 and W< (R , L ) = - 1. These 
12 22 

relations then again operate as orthormality conditions.    Equations analogous 

to (26) and (27) can be written and accumulations sweeping to the right and 

to the left can be taken to minimize error.    Then, still in analogy with the 

solution of Equation (20), the correct linear combination of the four homogeneous 

solutions can be added to the particular solution to correctly satisfy the four 

boundary conditions. 
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An even greater speed Improvement is found for the coupled case because 

the divides of the usual tridiagonal matrix reduction become 2x2 matrix 

inversions in the coupled case. These inversions are effectively absent in 

the partial Wronskian method because Wi is constant and can be judiciously 

made either 0 or 1. 

VI.  CONCLUSION 

The preceding sections have discussed the details of a simulation code 

which follows the particle orbits in their self-constant electric and magnetic 

fields. At this time, some experience ha£ been compiled already running the 

code. Using a non-optimized Fortran version with ^0 thousand particles in a 

1024 system, approximately 3 seconds is required per time step on a 360/91. 

The code has been tested by running a number of transverse pinch experi- 

ments. Figure 3 is a plot of the growth rates experimentally observed. The 

two electron pinches were run with counterstreaming cold electron beams and 

a heavy neutralizing background. The experimental points are shown for 

experiments on a 128 cell system and a 256 cell system. Also shown is a set 

of points for an ion pinch experiment (mass ratio 16) with cold counterstreaming 

ions in a cold electron background. 

Since the code presently uses a nearest grid point approximation for the 

magnetic field, it has generally been found that wavelengths of only a few 

cells are not handled accurately. This can account for the experimental 

scatter on the high wavenumber end. Since the higher wavenumber modes grow 

more rapidly than the lower ones, saturation occurs in just a few growth time 

for the lowest modes shown. The experimental scatter on the low end is 

because of the lack of enough time before saturation to get an accurate slope. 

151 



Haber, Wagner, Boris, and Dawson 

Physically meaningful results have also been obtained in more complex 

situations, such as counterstreaming inhomogeneous beams but here the theory 

is not complete enough for easy comparison to experiment. However, the code 

has yielded valuable physical insight into complex physical situations. 
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ABSTRACT 

A formulation for self-consistent 2- and 2 1/2-dimensional electro- 

magnetic and relativistic particle simulations is presented.   The particles are 

infinitely long charged rods that move under the influence of their self- 

consistent fields.   The numerical algorithms that numerically solve the 

appropriate Maxwell's equations and the Lorentz force law in a first 

order central difference scheme are given.   The principal results are 

also applicable to simulations in one or three dimensions. 

Work performed under the auspices of the U. S. Atomic Energy Commission. 
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I.   INTRODUCTION 

Over the past few years considerable efforts have been made in the 

study of relativistic electron beams in plasmas. The approach has usually 

been the use of fluid type equations in which for example the background 

is approximated as an Ohmic medium. To make a study of the nonlinear 

aspects of the hose mode and the tearing mode in relativistic beams which 

avoids such approximations, we have developed a self-consistent relati- 

vistic and electromagnetic particle simulation. Since the effects of 

interest seem to depend primarily on only two linearly independent wave 

vectors — one parallel and one perpendicular to the direction of beam 

propagation — we restrict ourselves to two dimensions. A description 

of such a model is given in Sec. II. The numerical scheme employed is 

a first ord?»" central difference scheme. The numerical algorithms are 

developed in Sec. III. It is interesting to note that with the exception 

of the constants the result for the Lorentz force is also applicable to 

a three-dimensional model. 

II. PHYSICAL DESCRIPTION 

In a two-dimensional model the particles are taken to be thin uni- 

formly charged rods of infinite length that always remain parallel to 

one another. A plasma consisting of such rods is inhomogeneous in x and 

y, which are taken to be the directions perpendicular to the rods and 

homogeneous in z — the direction along the rods. If the rods move 

only in the x and y directions the model is considered to be simply 2-D. 

Motion of the rods along the Infinite dimension constitutes infinite- 

line currents with the associated x and y magnetic fields and the z electric 

field. If this latter motion is incorporated in the model it is for 
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convenience referred to as 2 1/2-D. In both the 2-D and 2 1/2-D models 

gradients with respect to z are absent. The boundaries are taken to be 

perfectly conducting walls that are infinite in z and that form a rec- 

tangle in x and y. 

Initial conditions can be determined in several ways. In our case 

we will be interested among other things in phenomena associated with the 

beam head. We therefore need a beam injection mechanism. This is simu- 

lated by "peeling" charge rods off the wall and letting them proceed at 

the desired initial velocity into the cavity formed by the conducting 

walls. This can be thought of as a charged particle entering an experi- 

mental tank of some sort through a conducting foil. The background plasma 

can be thought of as a pre-existing but very cold plasma. It is particu- 

larly convenient to let the initial background be a perfectly cold and 

perfectly neutralized "gas" with no fields which is then "ionized" by 

the beam. The initial conditions and the boundary conditions obtained 

in this way are all self-consistent and allow us to treat transient 

phenomena associated with the beam head. 

The equations that are solved numerically to advance the particles 

in time are Maxwell's equations together with the Lorentz force law. 

This approach was adopted because the required differentiation when 

using the vector and scalar potentials proved unfeasible for numerical 

reasons. In order to put these equations in finite difference form 

the notion of finite size particles is used. This means that the 

charged rods above are not infinitely thin line charges but have a 
2 

finite cross section. The interpolation schemes of Birdsall and Fuss 
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are used to assign currents to points in the grid which is constructed 

in x and y, and to determine the forces on the particles. The differencing 

scheme is a first order central difference scheme in space and in time. 

A 1 1/2-0 code written to test the methods gave satisfactory results. 

The same conclusion is born out by preliminary results from a 2 1/2-D 

code. 

Y 
p*,Ei   J><EX^BY pJijE* 

H< '^y.E^Bx"     m taz <"JYA.B* 

JvEz JZ.ET 

Fig.  1. 

J*,|E*,BY 

H, 
One grid cell showing the relative positions of the points 

for which the various quantities are calculated. 

156 



Electromagnetic and Relativistic Simulations 

III. NUMERICAL    10CEDURE 

In order to simulate a plasm Including electromagnetic and rela- 

tivistic effects we need to solve 

Vx D     —J + c ät 

Vx£*Ig-0 

3t^=i(E% v x B 

7-B » 0 Is satisfied If we start with zero field and V-E * 4irp is accounted 

for by the first equation and the continuity guaranteed by the Lorentz 

force.   The latter two equations can be used to determine initial conditions 

and to check consistency of the computation. 

We shall restrict ourselves to cases where -r- « 0. 

to make these equations dlmenslonless according to 

It is convenient 

v ■ u c 
y 

t ■ f X 
c 

q - q' Q 

X  ■ X* X 

y ■ y X 

E - E X 

B - B X 
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where 

are: 

Q ■ charge/length 

X « some typical length 

c = speed of light. 

In component form the dimensionless equations that need to be solved 

3B 3Ey 

W    3T=Jx + 3T 

(2) 
3B_ z _ 3E. 

J.. + 3x       wy     3t 

3BV      »_ 3E- 
(3)   _y_ * r j   + _1 v°'    3x        3y       uz      3t 

3E        3B 

3E        3B 

<« -3r+3t*=0 

(6)    i.?JL + i-o vc;    3x       3y       3t * 

along with 

(7) j.Ji^]rE%iii] 
x mc    / L '    J 

where 

**\%Tk 
6<x - xk> 6<* " V 

and 

Yk»    Vl  + ("xk)
2 *  («yk)

2 ♦  (UA) 

(NOTE:       ^-]   is dimensionless) 
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Inspection of Eqs.(1)(2)and (6) shows that they form a complete set of 

equations for a 2-D system with J   and J   as the driving terms.   Equations 
A   y 

(3), (4) and (5) are the additional equations to make the system 2>s-D. We 

will put the above equations in finite difference form using the centra! 

difference scheme: 

dA 
a; 

"i+i 
Hü 

"A-Us 

where Hw is the step size.   We use a rectangular grid. 

Numbering x,y,t steps i.j.n respectively (and denoting particles by k) 

we find it convenient   to use the following quantities for a 2-D computation: 

B 
Xi+>5,j yi, 3+h 

For a 2^-0 computation we also need 

Zi,j xi, j+% 
Bn+!s     . 
yi+*s,j 

We shall be concerned mostly   with rectangular systems with perfectly 

conducting boundaries.    If the boundaries are chosen to be at i = 0, i - L, 

j = 0, j ■ w, where L and w are integers, then we see that the above choice 

of field quantities is i'jst right to make the fields that are known from the 

boundary conditions fall exactly on the boundaries rather than an half grid 

space from them.   That is to say n x E = 0 and n • B = 0 imply 

i+*s,j=0w 
yi=0L,j+>5 

= 0 for 2-D 
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'tj-ft. 

B.n^      = 0 
y1+%,J 

for 2)s-D 

where the choice of integral and half steps agrees to satisfy these boundary 

conditions exactly. 

The algorithms that give the fields are for 2-D 

Xi+>s,j Xi+»J,j   Xi+>i,j     \JI\ Z1+»s,J+»5       zHH,3-h} 

y, tM. y« ,.,      y, ...     [fix"/   z1+Jstj+Jä     z-.^J fi ,j+>s y1, j+%      yi, j+ij 

Bn+!* = Bn"'ä 

zi+!s,j+)s        
Zi+!s,j+!i 

|Htl/Fn IPE - E.1 

yi+l ,j+>s      yi ,j+>s 

Ht Ln _ En        \ 

^l    X1+%,j+l       xi+is,j 

and additionally for 2»j-D 

EÜ       - -Hfj"-'5     ♦ E"-1      ♦ 
Z1J        Zi,j Vj 

Ht Ln-Js n-!ä 
E    Vi"   yi-*.j 

X1,j+»s       X1,j-«sj 
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Ht 
fly 

'En - En 

iZ1,j+l       z1,j/ 

Bn+Js      . Bn-h * Ms? yi^,j   »i*w  lHxl zi+i.j   zi,j 

where we have made allowance for using a rectangular rather than a square 

grid. 

We now turn to the Lorentz force. In difference form it is 

mc Ht 
E" + »" X Bn 

If we use  *-=—   in the expression for y we then in practice have a 

set of three coupled fourth-order algebraic equations for the components 

of un . Let us find a different way to solve these equations. To this 

end we realize that for large U,Y varies nearly linearly with u.    If we 

assume that changes in u in one time step are small, we can then expand 

2-   in powers of (un+h - un"'ä).   The result is 
Y 

I . u"-* + u^ - U^ 
Y"     7^    "17^ 

P**t . >J»i..>% JL-2 + u"^ - ("     -u    )'» 
Ztf-hf 

Substitution of this expression in the Lorentz force gives a linear vector 

equation in u . We have dropped a (un+,i -un"V term which contributes 

tc u ^ only 1n the second order. Using the following notation: 
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B = Bn Ht q ^8- 
mc 

£ * £» Ht q '-4 
mc 

the Lorentz force becomes 

Sinz 

U    = U 

Y   = Y 
n-* 

(u* - t) - £-^LL* ♦ J [(u+ - u) ■ Hj] u x*B - E+ ax B 

This can be solved to yield 

u = 

where A      A A      A A I A      9 A      A      A 

u.E + (»-B?(E-B) . u_. B x £tuBZ - B(u'B) 

u*(u   - u) = 'A A    A    A 

4y 4y 

This is an explicit solution for u .    It is also the general solution in 

three dimensions. 

The new positions are given by 

,>+5s 
xn+1 * ? ♦ Ht u 

n+y 

It is clear that in a 2-D system no forces can ever arise to make the 

system 2»j-D.   Also we see that e-m waves polarized in the x-y plane can 
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exist in the 2-D system.   In the 2%-D system all polarizations are possible. 

In all cases the wave fronts have to be cylindrical. 

Because of the frequent occurrence of Y and the square-rooting involved 

it is desirable to find a way to calculate this quantity in some other way 

to save time.   This 1s particularly true in our system of units because 

during the tr   time step the value of y at n-h 1s needed in the Lorentz 
A 

force and the value of y at n+»4 1s needed to calculate the new J and the 
A 

new x. 

However, we could use 

M 
Y"+'sSYn-!ä+(un+!s.un-,ä)-^ + 

This approximation Is not completely consistent with our other approxi - 

nations, but for large u, y varies very nearly linearly with u, so that 

this 1s not a serious matter.   For example using u""^ = .1, u^     = .1, 

if* = .1 and uj* = .15, uj+5i = .15, uj* = .15 gives yn^ - 1.030 

compared to the exact Y      - 1.033.    In practice we do not expect velocity 

jumps of 50%.   Even at that, however, for larger u the agreement of approxi- 

mate     and exact Y values becomes outstanding for the same relative size 

jump. 

In connection with the evaluation of the new J's we remark parenthetically 
A 

that the assignment of J values to the grid space requires an Interpolation 
A A 

In x at half time steps.   However, x Is calculated only at integral time 
A 

steps.   The apparent need for two x arrays can be avoided by calculating 
A 

each particle's contribution to the J array as its velocity and position 

are updated. Also, the interpolations that are associated with the 

163 

^^^ütfMM 



Sinz 

aforementioned finite size of the particles are the same as those of 
2 

Blrdsall and Fuss . 

The methods above have already been used in a 1 1/2-D code. The 

results were satisfactory and no reason was found to modify the approach. 

Preliminary runs of a 2 1/2-D code also indicate that the present methods 

are adequate. 
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Symbolic Programming for Plasma Physicists 

K. V. Roberts and R. S. Peckover 
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Ab'mgdon. Berks.. England 

1.      Introduction 

The details of corrutinr ere one of the burdens that rust be 

borne by the physicist whc believes in a particular case that only 

by a coimlcx calculation will he be able to substantiate his theory 

or establish the intricacies of a real experimental situation. 

Nevertheless, it seers to us that the simulation of r>losi>'a behaviour, 

tc take or examrle, is nt present rcade a irore difficult task thrx. it 

need be rartly because of the linitatiens of eyistinr rrorrairjninr 

lanrunres, and partly because each worker in the fiele1 usually constructs 

his own ir.fut, output and control freiHties, and often does not develop 

ilia rroprar in  a systenetic wry.    I'rwever, a corr.cn structure can 

be adopted  for a wide elars of timo-derer.dort flair1 flow rroblsrs. 

Vo hel^ the coni-utationel jvlasre rshysicist to keer closer tc 
(1,2,3) 

his rrobiei., the symbolic use of /Upol has beer, developed 

Turther a syatcn hns been devisee  which enables ccirruter rrofrarcs 

to be built quickly out oi' n set of standard prefabricated EOduics, 

with the addition of a few further r.cdules peculiar to the rrrblem. 

The style enables all details of rathenatics and  loric to be hidden 

at a lower level.    :>e discussion will be based on the use cf 

Syibolie ;l,~ol, see section  II, but t>e rerar^s about the need  for 
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a pood adaptable program structure hold true also in Fortran (see 

Appendix). 

The prefabricated general purpose modules deal with output, 

vector algebra, vector analysis, program control etc., act as a 

library, and provide the physicist with a prcrrcr. which has a logical 

structure end with the mathematical tools with which he is femiliar. 

iieny programs in plasma simulation share the ssno superficirl 

structure - a set cf differential equations are solved as a function 

of time - and this superficial structure can be r.ade the same in a 

suite of computer programs, and only the sections describing the 

actual physics need be different from case to case,    fiyr.bolic J*lgol 

programs can moreover be written in a mecUine-inc'enencent way, sc thct 

they will run cuickly on any computer system, nnd with careful design 

they can be made to execute with high efficiency. 

To construct worthwhile programs rapidly, modules with well-defined 

interfaces and de*)endfible characteristics must be available - this 

can be achieved ueing tiny tcstbed programs the result? of which are 

available as guarantees of confidence.    The "strndard ewrty rrcgrem" 

DUMMYFUl! described in section III was tested in just this •■■rry before 

being used as the skeleton on "hich to hrng more subst^ntirl rrorrarrs. 

Such programs as POLLS (a 2D prorrar fo • studying enclosed convection) 

and TPIKITY (a 3£ MT rrcgran) have been tested tbis vpy ant. rrcviriu 

good illustrations of the way in which initicl conditions PRC boundary 

conditions (see section VI) can be set up easily in r,"mbr:]ic /'Irol I. 

These were initially prograns using leapfrog sclier.xs but th«. modular 

structure is flexible enough for other schemes both explicit ani; 

implicit to be incorporated without major surgery.    :;uch flexibility 

is illustrated in L'ection VII. 
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2.      Symbolic Algol I 

Let us first recall bow symbolic Alpol techniques can be used 

to express proprsms that solve sets of partial differential 
(1) 

equations.    These techniques were briefly reported at Culham 

ant* a more eor^l-t» account can be seen in Tapers to be ™>Vliaher> 
(2.3) 

soon . 

For mathematical text books, a feirly standard notation has 

been adopted for such topics as vector alpebra, and analysis.    This 

notation is hiphly compressed and can bf cc-ordinote-free.    For 

example, the vector mapmetic field is written tersely as £ instead 

of in the expanded fore (Bx(x,y,z), B (x,y,z), Bz(x,y,z)) and such 

expressions as (curl E).B are independent of both the particular 

co-ordinate system used and the effective number of dimensions. 

Consider the equation of charpe conservation 

|1   +    div   I   -   0. (i) 

Usinp an explicit difference scheme ve may express this in Alpol 60 

asj- 

AC[0]   :- 0 - DT • DIV(J); (?) 

where: 

AC is on array hcldinr the chnrre; 

0 is the local oripin of the difference scheire; 

0 is the value  of the chnrre ot the  'old'  tire; 

DT is the effective time increment; 

J is the current vector; 

CIV is a finite difference operator. 

Here 0, J, and possibly DT are real parameterless procedures,    i.e. 

they depend only on implicit .> which represent the chosen 
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vector component   and lattice point in terms of the reemetry of the 

problem and do not depend on «ny explicitly exhibited variable. 

the differential »c&rator "div" is defined in mathematical physics 

for a cartesian co-ordinate system by 

3 »F. 
div F   ■   jl~ —- 

i « 1      3xj 

In Symbolic Alpol I it is represented by the «suite analogous real 

procedure DIV which has a declaration of the form 

real procedure DIV (A); real A; DIV: - SIGKA(DEL(A)); (<t) 

Hie procedure DIV here has an explicit argument, as div does in vector 

analysis. 

A second example of the compactness of Symbolic Alpol notation 

ia in the difference form for the Vlasov equation. For a continuous 

distribution function f we may write the Vlssov equation in ordinary 

mathematical notation as 

3f # ♦ (v.v)f ♦ u. 4- >f-° (5) at   T   x""*   '   v- "57 

without needing to say explicitly that f is a function of (xfy,stu,v,v,t) 

wherever it is mentioned. 

In Aljtol 60 this can be written 

AF[o] : - F - DT • (DOT(V,DEL(F)) ♦ DOT (A,DtXV(F))); (6) 

Because procedures can be parameterless in Alpol (unlike Fortran) 

we can express the distribution function as F, its current value, 

through the definition} 

real procedure F : F ■ AF(O); (7) 

where 0 is a matrix aubacript and represents the current position 

on the lattice. 

The real procedure DOT is the finite difference analorue of the 

inner vector product i.e. 
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a.b   +    D0T(A,B) (e) 

To show the way in which Symbolic Algol I is able to build up 

new procedures from older ones in a hierarchic fashion, the nested 

structure of DEL can be exhibited. The abbreviation RP will be 

used for reel procedure and IP for integer procedure 

RPDEL(F); real F; DEL - (EP(P)-EM(F))/(2«DS); 

HP EM(F); real F; begin 0 : - 0 - DO; EM:«F;0:«0 ♦ DO end 

HP EP(F); real F; begin 0 » - 0 ♦ DO; EP:»F; 0:- 0-D0; end 

IP DO; 

DO:* if C eg, 1 then 1 elae if C eg, 2 then PI elae PI*PJ   J 

0 is the current lattice point. C is the index specifying the 

direction. 
B 

C • 

1 1 f - 1        P J .  A 

(9) 

If C ■ 1, DO corresponds to the length PA, and the statement 

Ot" 0 ♦ DO moves the current origin from P to A.    If C ■ 2 the 

oriftin     is sored to B,   but if C ■ 3 it is moved in the i-direction. 

Thia aay be compared with the mathematical hierachy 

where 

2h 

E**(r) - t(r*4x) 

E~*(r) - »(r-dr) 

dr ■ dx (x component) ) 

or dy (y component) 

or dx (s component) k 
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With so mgr netted   procedure cell« Symbolic AI0OI I usually 

execute« «lowly, but it is very clear what the program ia doing.   Such 

an approach enable« clear programming in the initial «tage«.   Subsequently DEL 

could be made faster by introducing a recto; OR with 3 elements 

containing 1, PI, and PI * PJ respectively.    "Hie procedure definition 

for DEL could then be compacted to 

RP DEL (F)j real F; begin real Fl 

integer DO; 

DOs « DR(C);    0: - C ♦ DO; Fl: - F; f (13) 

0: ■ 0 w 2 • DO; DEL: • (Fl - F)/(? • DS); 

0: - 0 ♦ DO; end 

A deeper level of optimisation is to replace the r.h.s. of eauation 

(6)by an explicit linear form in AF Q> ♦ •] for * sun of terms in 

p.    For example when C ■ 1, 

DEL(F) ■ (AF[o   ♦ l] - AF [o - l])/(? • DP); (l»0 

Optimisations of this kind can be carriee out automatically end 
2 

are discussed in detail elsewhere . 
(la) 

Converter prorrams exist    which enable eountiens to be 

converted automatically into an optimized cede for any desired 

combination of output lanpuape, ec— ordinate systen, and difference 

scheme. Lanpuapes implemented so far have been Aipci, Fortran, 

KDF9 Usercode and IBM 360 assembly lanpuape. The optimised 

module is then used, in conjunction with the remainder of the 

original Symbolic Alrol 1 program, to carry out the production runs. 

3.  Standard Kertular Ctructurc 

Consider two prorrana that solve two sets of different tine- 

dependent fluid equations. Lvidently these profrars could be designed 

to have a lot in cannon; everything, in fact, except the physics. We 
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have developed a aeries of Alpol nodules which ccel with standard tasks 

such as output, vector elpebra and analysis, prorrac control and so on, 

and which fit together to enable a wide renfe of rhysics prerrasis to be 

constructed cuickly.    Pone of these prefabricated modules hove been put 

together to form a skeletal propTa» DtKKYFUK which has the renerel 

structure of a proprnir thnt simulates tine-dependent riarticle and fluid 

flows, althouph it actually does no physics.    It is a "standard empty 

profTSjn" which with little effort cfn be converted into e runninr 

proprem for a real physical problem. 

DlMflfFUN consists of a set of nodules which are available as on-line 

files and has the following structure: 

WM-IYKL/D 

OUTALOOL 

ALGEBRA 

CAPTEFIAK 

UTILITILf 

DIM*Y FPEPATA 

HAI« COI.TPOL 

DtT3Tf PHYSIC? 

BUM IT cwxroL 

TAIL 

Fir. 1 

Let us build the prcpran ur piece by piere: 

(a) An Alrel propren needs ,iob control cards 

for the outer block. 

(b) It needs an end for both the outc-r block and the inner 

problem-oriented block. 

(c) In order to output snythinp, an output channel «nut be 

specified and output procedures rrevitec. 

i, and n befin    / 

i 
lit I 

Till 

>        OIT ALGOL 
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(d) The type of physics problems in which we are interested 

uses vector alpebra, difference scheaes in Cartesian 

peoaetry« with various sorts of array output. 

(e) Clearly other standard library nodules could be inserted, 

to generate on-line graphical display or to use 

cylindrical co-ordinates, for example. 

(f) Prior to entering the inner (physics) block, dynamic 

array bounds must be set and the various modules 

activated. 

(?)   Most fluid simulation rrorrams seem to reouire much the 

same elements, as we find fc;- perusin? prorrnns written 

in the past both by ourselves and by others.    These 

have been formalized into e> standard control structure . 

MAIM COIITFOL consists of a series of . .irameterloss 

procedures whose names describe their functions (Kir. 

2).    This provides a compact way of statin? clearly 

what each section of the pro?ram does . 

Each of the procedures called by MAIN COI.TFOL must be 

defined and a series of modules are created to do 

this.    Initially we need only two:    COIITFOL and 

PHYSICS. 

ALOEBEA 

CAFTESIAH 

UTILITIES 

PFEDATA 

KAIM CONTFOL 

^> 

(h) COHTBOL provides the procedures which centre: the prorress 

of the calculation, i.e. which label the run, clesr the 

core store, initialize the run, output when reouired, and 

tie up the loose ends after the run is complete. 

COIITFOL 
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•COMMENT'- 

S-FILHttMIH COHTFOL.CPIP*    (STAKDAPD »Mil« PPOGRAM) 

•PROCEDURE'MAIN CONTROL;'BEGIN' 
LABEL THE RUH; 
CLEAR VARIABLES AfiD ARRAYS; 
SET DEFAULT VALUES; 
DEFIHE DAT/ SPECIFIC TO RUM; 
SET AUXILIARY VALUES; 
DEFIBE INITIAL CONDITIONS; 
INITIAL OUTPUT; 

FEPORT(l,l) 
PEPOFT(l,2) 
PJEP0RT{1,3) 
PEPORT(l,lt) 
REPOPT(l,5) 
PEK)PT(1,6) 
PEPORT(l,7) 

»FOR» N-HSTART'STEP'l'UNTIL'NSTOP'DO' 
'BEGIN'MAIN COMPUTATION CYCLE'.' T«T+DELTAT; 
ADVAHCE ONE TIMESTEP; OUTPUT IF RECUIPED; 
•END' OF HA» CYCLE; REPOÄT(l,8) ; 

N-NSTOP; FINAL OUTPUT;TERMIHATE THE RUB; REP0RT(1.9)- 
•END' ' 

Fip.g 

(i)    PHYSICS    provides a slot where the real physics is to be ^ 

inserted.    Initially it contains only a cuuny procedure: (Fir,3) 

Hill 

FILE«DUMMY I^FICS« 

•PROCEDURE'ADVANCE ONE TIMESTEP;'BEGIN'LIKE 
TEXTC  •••VE••HAVE••AWAKCED••ONE••TI^^STEP••,   ') 

LINE;'END'; 

/ PHYEICf ICS 

PHYSICS can be augmented, if reouired, by procedures which 

solve Poisson's eouatinn er which deel with standard 

boundary conditions, for exanrcle. 

(j)    Through the module OUTALGOL, mentioned earlier in DIKMYRUH, 

is funnelled all input and output.    This nakes the prorrer 

portable, since the changes required to run on a different 

machine are all concentrated into one plnce. 

J 

tUa^YFUl» 

k.     Acceptance Tests 

Each stodule is part of an assembly, and as with any enrineerinr 

component that is to be used without constant attention, it is 

sensible to put the aodule through a proper set of acceptance tests 
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to guarantee that each element of the nodule per*form properly.   Every 

nodule must be completely dependable.    Further, by nakinr the testa 

(generally available« the authors of the program raise confidence 

levels, end allow the user to see for hinself any restrictions 

which nay apply. 

let us introduce the concept of a "testbed".   This is a special 

small program written for the new nodule which uses and tests out ell 

its features in aa thorough but economical a way as possible.    A 

testbed program consists of: 

(a) The pre-tested nodules required in order to use the 

new nodule, or to perform the tests. 

(b) The new nodule itself. 

(c) A specially written TRIAL nodule, which ia the part of the prorrar 

that runs through all the procedures in the nodule which 

ia being tested. 

For exanple, the TESTBED of the nodule «ALGEBRA» which ia used in 

DUMfYRUH consists of b nodulesi- HEAD (which contains the job 

control cards);    OUTALGOL (thrown which is funnelled all output); 

ALGEBRA itself, and ita associated TRIAL nodule (see firure «). 

, HEAD 
' OUTALGOL 
• ALGEBRA 
• TRIAL 

Fir.lt 

HEAD and OUTALGOL are nodules which have been rut throuph just such 

tests previously.    The results of this test are aade available    aa part 

of the documentation for the nodule, and this facilitates conversion 

to other computer systems. 

For further illustration let us consider the module CARTESIAN. 

It consists of procedures which are the finite difference analorues 
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of DIV, GRAD, CUFL.    Of course these have different forms depending 

on difference scheme and peoaetry;    the forms in CARTESIAN are 

appropriate for 3-D Cartesian peometry in which the operators are 

defined in terns of central difference formulae. 

Analytically 

j curl(u)|       = Eijk   1« (15) 
3xk 

In 3 dintaisions, it is convenient to think of the dimensions (x,y,z) 

as (x.,Xp,x.) which can be written as {(x^it »jt ^j+i) / modulo 3 f. 

In terns of these we may write 

/curl(u) j . -11      ~     (16) 
3xi*l 3xi-l 

f     -S      3ui*2     9ui-J 
i.e. |curl(u)/  "     "    (modulo 3 arain) (u)/       -       

-ji 8*i ( "" [i 3xi*l Jxi-1 

The Alpol procedure CUFL is  ? s fined by 

CURL(U) ■ FP(DEL(EP(u))) - FM(DEL(FM(u))); (17) 

in Symbolic Alpol I.    The procedure FP effectively increases the 

index by unity, and HM decreases it by unity.    DEL is the annlor of 7 

(see equation   9 above). 

A test for CUFL coulc be as follows:-    Let f., f., f., p be  any '. 

scalar   functions of x,y,z.    Construct a general vector A s.t. 

A - curl (f.   x ♦ t? y ♦ t^t) ♦ Vp Up) 

Then for the differential operators, the following 2 identities hold:- 

div curl £   =    0 dp) 

and 

curl prad f    =    0 (2r,) 

If the finite difference operators DIV, CUFL, GFAD are defined in 

terms of central differences on a Cartesian mesh, l.iese identities 
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■till hold.    For • TESTBED for these, a TRIAL nodule would then 

containt 

•HP' PI; Fit« (user's choice: e.p. x1* ♦ y1* ♦ as1*); 

•RP' F2j F2:"  (user's choice: e.r. 3xyz); 

•RP' F3; F3:« (user's choice: e.f. x3  ♦ y3  + x); 
x-»y+z 

•RP* Gj G:"      (user's choice: e.r. e ); 

'RP' A; A:» 

CURL(F1«S1 ♦ F2*E2 ♦ TyE3) * GRAD(G)j 

and the printing PROCEDURES 

PRIHT VECTOR (CURL(GRAD(Fl)); 

PRIHT SCALAR(DIV{CUPL(A)); 

The output is of course 

0.0 0.0 0.0 

and 

0.0 

Tho procedures El, E?, E3 cone fron the nodule •ALREBPA*, and are 

defined thus:- 

•RP' Elj El:« if C £2 1 then 1 else 0; 

•RP' E2; E2:- if C eg, 2 then 1 else 0; 

•RP' E3; E3J» i£ C e£ 3 then 1 else 0; 

where C is an index indicating which conpcnent - x, y or x - is 

under consideration. El, E2, E3 are in fact the unit vectors in the 

x, y, and t directions respectively. 

The nodules of which the skeleton program DUMMYRUH is composed 

have each been tested usinp the TESTBED approach. The progressive way 

in which such tests can be carried out is illustrated i.i fipure 5. 
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ADDITIONAL 
MODULE 
WRITTEN 
POD TEST 

rtiM. 
0 

Figure 5:      Listed along Che top «re the modules of which DUMMYRUN 

Is constructed. The staircase shows the systematic 

way in which modules must be tested. For example 

TESTBED4 requires 4 pre-tested modules (DUMMYHEAD, 

OUTALGOL, ALGEBRA, CARTESIAN) in order to test 

UTILITIES. TRIAL4 is the specially written module 

containing the test material. 
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5.  Portability 

Collaboration between the staff of different laboratories can 

often eake desirable the runninp of the sane computer propram on 

different machines. The transfer fron one machine to ar.cther can 

be made more quickly.if the ch acres which must be rode are local- 

ised into regions where such chenres can be flapped. 

A proprair. con be made more portable in 3 seperate areas:- 

i)    By carefully avoidinp, in the early ma:* numbers cf a prorran , 

exploitation of the advanced features and quirks peculiar tc a machine 

(we are of course discussinp prcprams which in the past hsve taken at 

least 1 man year to ret into production)! In Fortran this mipht 

imply for example restricting oneself at this tire to Fortran IV. In 

Alpolfone avoids Jensen's device for example. I» later versions, 

some pieces of propre» can be replaced by code tailored for a parti cu- 

lar machine and by fast assembler subroutines, 

ii)   Input and output should be localised and flapped. If I/O 

is restricted (for example) in Fortran to verxiculnr subroutines it 

enables the more sophisticated I/O packnpes available en sor,e machines tc 

be introduced easily into the nropram on transfer to these mn chines, 

iii) Lvery machine mipht well as a matter of course have evnila'ule 

a series of tiny proproms or macros which will chrjipe the character 

codes, (and in the case of Alpol alter the representr.tion rf the ilrol 

basic Symbols) from that used on one machine to that, for another. 

For the job control lanpuapes, while the variety of different machines 

continues, there aeens no better way of praftinp a propram onto ar 

unfamiliar machine than havinp th<5 aid of someone with local kncvledre. 

Thus, at the Culham Laboratory we are deliberately vrit:ng our 

Fortran programs In ASA Fortran IV, which enables a program to be 
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portable, and Incidentally to be publishable and open to the criti- 

cism of other computational physicists. For example, since the name- 

list facility is not implemented on all big machines, it is not used, 

even though it is very convenient.  In Algol, calls by value are 

avoided since some compilers do not have this feature. Again, since 

only the first six letters of an identifier are significant on an 

IBM machine, the long identifiers are chosen with care to ensure the 

distinct identity of each to the compiler. 

For input and ou^nut, and the program transfer macros, we restrict 

our attention at this point to Algol;  further comments on Fortran 

are found in the appendix. 

The Algol module OUTALGOL (see also section 3 above) has been 

written to contain the high level procedure calls required to make 

simple-minded input and output requests, some of these are shown in 

Figure 6 as they are implemented on the KDF9 at Culham. The inten- 

tion is to hide detail, irrelevant in more physical contexts.   The 

jvocacy of the use of such procedures, independent of im,lementation, 

is not new, see for example Michie, et al   .   We report that their 

systematic use is worth the additional care in design initially.  For 

the implementation on an IBM 360 see Figure 7.  Similar OUTALGOL 

modules have bet I written for CDC 6600, the ICL 1900 series and 

GE 235. 

To effect transfer from one machine to another the character 

code must be r.lte'ad, and the Algol Basic symbols correctly represented. 

For this purpose the CACTUS package has been developed at Culham. On 

the Culham KDF9, the COTAN on-line system, contains among its commands 

the facility for generating a "macro" command - i.e. a command which 

blocks together a      series of commands in a file and activates 

them with a single command   . Macros have been written which change 
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'FBOCEDUBE' OUTALGOL; 
•BBGIN* SeCIIAL.UY0UT(,[,S-MDDO.DD']1); 
NTEGER=LAYOUT( '[ 'S-NDDD']');QUT=10; 'END'; 

'INTBGEB'    BECIlftL,Kma»,OUT; 

'FBOCEDUBE' HLANK;SFACE(OUT,l); 
•FBOCEDUBE' DfTVAlt(N);'IKrEGER'N;lHITE(OHTtiffEGER,N); 
'FBOCEDUBE' IVftB(NUlE,N);' STEINE'Nftlg;'INTEGEB'N: 

'BEGIN' TEXT(NAJIE);B^UaC;TEXT('[' = ']');INTVAB(N);'END'; 
'FBOCEDUBE' LINE;NE«LIN(OUT,l); 
'FBOCEDUBE' FAGE;GAP(OUT,l); 
'FBOCEDUBE' JJ2£(T);*STBING'T;IIBITET(0UT,T); 

Figure 6:      The module *OÜTALGOL* includes such procedures as the 

above.  REALVAR and RVAR are similar to INTVAR and IVAR. 

'FBOCEDUBE' OUTALGOL., 

'BEGIN' OUT .» 1.,  'END'., 

•INTEGEB' OUT., 

'FBOCEDUBE' 3LANK., 0UTSTBING(OUT,'(' ')')., 

'FBOCEDUBE' INTVAB(N).,'INTEGEB'N., OUTINTEGEB(OUT,N)., 

'FBOCEDUBE' I VAfi(NAME,N).,'STBING'NAie.,'INTEGEB'N., 

*BEGIN'TEXr(NMJE).,BlANK.,TEXT('(' = ')').,INTVAB(W).,*END'., 

'FBOCEDUBE' LINE., SYSACT(0UT,14,l)., 

•FBOCEDUBE' PAGE., SYSACT(0UT,15,l)., 

'FBOCEDUBE' TEXT(T)., 'STBING' T., OUTSTBING(OUT,T)., 

Flg'ire 7: Some OUTALGOL procedures used on an IBM 360. 
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the representation of Algol basic symbols on the disc in such a way 

that it coaes to a Data Dynasties teletype in the for* suitable for 

whichever machine is to be recipient. It is stored on the disc as 

"Wheteg Algol" which is a subset of the representation acceptable to 

the Whetstone compiler for instant execution and which is also accept- 

able to our Egdon compiler for batch processing.  This flexibility 

enables the KDF9 to be used reasonably efficiently (viewed as a 

■an+machine entity). 

Given an Algol program in "Wheteg". it can be automatically 

translated into the forms required for use on a CDC 6600, IBM 360, 

ICL 1900 or GE 235, though still stored In an on-line file. The actual 

transfer can occur in a very simple fashion: the ISO paper tape code 

used by teletypes interfaces with all machines which can use teletypes. 

Thus a paper tape can be produced for an Algol program which is then 

read back to another teletype (or the same one) connected up to a 

different machine. Thus the existence of different card codes on the 

various machines can be circumvented. The development of a program 

on a machine with a fast compiler aid good debugging facilities, and 

the subsequent transfer to a machine with fast running times and a big 

core seems an attractive method of cenputlng effectively. 

f.      Initial Conditions und I'cimdary Conditions 

The settinr of initial conditions *r.<* botindrn' conditions is, in 

B substantial corruter vr^ir**,  r nuisance. It thYra  «•>, in codir.*" 

terra, far rore statement a nr.c involves rcro ir.tri orte devices thr>n 

the body of the calculation in which -rst of the tire of the rorr>utntiori 

is srent. 

This need not be so, and ve describe in this section »ore of the 

tools with vhich ve hove provided ourselves. Tome of these could be 
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produced in Fortran, but there is no doubt that the availability of 

parameter lee» procedures in t.lpcl  is a boon. 

For example it is convenient to be able to set the values of 

an array in a sir-pie fashion. Consider the triplet of t.Xrel 

statements:- 

TV:n D; 

Fl.'LL KEniPH; 

SET ?c/sLAP(n:i,rii.'(?«riE,x)*rE;(?*piifY)); 

This sets the potential of    4   over the whr]e rerioi, of interest in t. 

two-dimensional calculation,to be sin(?*x) sir.(?ry).    Of course the settinr 

of parameters and general spadework needs t.r be drpe sor.evi'.cre, but not 

at this point where we are only concerned with the mctlieruticsl 

formulation of the physics of the probler.    Further assirnavent cf 

values is not a cliansy natter but can be done tersely, as can best 

be cade clear by settinr down the content* of the above procedures. 

procedure TVO ii; berin KEIM:« ?\ I:« J:« (*; K:» -1; !.'K:» 0; er.d ; 

(the problem is declared tr be PC, the values of I and J rrc 

cleared, and the k-direetinn is cut out). 

procedure FULL Pf.nim;; berin IH:« JP1:- KT1:» r;  IP?:, J;I; JJ?:. ÜJ; 

KP?:» KK; end; 

(the upper and lower hounds  for the nrrry indexes rre sot in 

terns of the array sixes). 

procedure SET SCALAR (A,F); *r\cy A, real F; 

begin procedure SETS2(K);  Integer K; 

for J:- JP1  step  I until JP2 do 

for I:» IPl step 1 until  IP2 do 

begin 0:« 1 + (I + 1) + PI*(J + 1) + PI*PJ*(K + 1); 

A[o]:- FJ end  ; 

U NDIM eg. 2 then SET S2(-l); 
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else for K:» KP1 step 1 until KP2 do SET S2 (K); 

(the array A is set to have the function value F evaluated at 

the relevant point on the lattice). 

To set the value In 3 dimensions of the magnetic field B for each 

of its components B , B , B in the interior of the region of tstcrest 

we may write 

THREED; 

INTERIOR REGION; 

SET VECTOR (AB, Z*Z*E1 + 0.5*X*Z*E2 + X*E3); 

This sets the magnetic field to be 

B - (Z2, \2X,  X) 

El, E2, E3 are the unit vectors defined earlier (in section 4); 

AB(C,0) is an array with 2 arguments: C (which determines the component 

x,y,n) and 0 (which determines the current lattice point). 

The declaration 

real procedure B; B:= AB(C.O); 

enables B to be used in equations for the magnetic field as vector IS 

would be. 

An alternative approach is to use ! conponent arrays 

BX.O^,  BYLO",  BZr.(>; 

rather than the single array AB(C,0).  Obviously a powerful technique 

should not be tied to a  decision on how to store the inl urination about the 

magnetic field. 

In terms of these 3 arrays, we could sei up K with the procedure call.' 

THREE D; 

INTERIOR  REGION; 

SET SCAUR  (BX,  Z*Z>; 

SET  SCALAR  (BY,   0.5-X*Z); 

SET SCALAR  (BZ.  X); 
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Another act of useful procedures Involves setting values on lines 

and surfaces inside the region of interest. These are all tiny pro- 

r dures. where the purpose of defining them is to remove the mechanics 

of the computing from the focus of attention. For example 

procedure SET XLINE (A, JJ, KK, F); array A; real F; integer JJ, KK; 

begin J:« JJ; K:» KK; 

for I:- IPl step 1 until 1P2 do 

begin DEFINE 0; A[O]:- F; end end 

This sets the elements of the array A, corresponding to points on the 

line y » y  Z » a. (i.e. J » JJ; K ■ KK) to have the functional values F. 

This ruled line provides a simple way of retting values on a plane 

surface parallel to an axis. Thus 

procedure SET YZ SURFACE (A.II.F); array A; real F; integer II; 

for K:- KPl step 1 until KP2 do 

SET YLIKE  (A.II.K.F); 

sets A * F on the surface x » x. (I.e. I « II) 

These hierarchic definitions enable one to program as clearly as one can 

write mathematics. 

Similarly with boundary values, If the boundary conditions can be 

set easily and can be seen to have been set correctly, a program is simp- 

ler to handle. The setting of some of the possible boundary conditions at 

the wall for a plasma experiment are shown in figure 8. 

WALL t 

GLAPD>:(PH0,pirit,7l:pr, 7I:FO, rI!.TlJ rTEPf TO, t:i); 

CWAPDX (J? ,ryi5i;TPi c,zr:m, y- "Tt-rrynr PT.r^iTLr r nrr Tr,! I); 

r,uArpy(TFW,Pinn,Tf«7»(:. ?), zr*n,rm u °Ti rr T^.I I); 

The procedure »711 (besides rictinr ns n  pnrnrrr.rh: hosrinr) sets 

the current cririn or. the vnll er.i  nrrnnres fcr it tc > rve nJcnr in 
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the x-direction aettinr suitable wlues.    The procedure OU/FDX has    nnerrr.ic 

arfunents to make the boundary condition* cleer.    The use cf   nneronics 

is important for although the analytic condition way be simple, the 

difference for« is often messy.    The first set of arrunents defines 

the physics.    Fcr example, ve here a ririd boundery on which the 

density is set to zero, and the tenrerature to T 7(1-7).    The z 

cenmonent of the electric current j is set to zero, ar.d so is its rreidient. 

The second set of arruments pick out the points where vnlues rre to be 

set.    For exarrle. usinp a lenrfrcr uchere me rev only need vlues 

at alternate mints, the tiesh in use shiftier by me interval between 

nlternetinp tine sters.    The starting rcint is shifted brckwarr's rnd 

forwards by X-FTAfTtEPETTT,  and values «re set Pt filtern>>t<? prints  ur tr 

point I • ill. 

7.     Flexibility 

The flexibility cf e noduler structure, rrorerly censtructec, 

enables rrtrras» to b* developed euickly.    Each nodule, besides 

beinp fully tested has a corresponding durry rcrule.    This is 

composed of the sane procedures *» the full bodied rorulc cut e*ct. 

is duargr.    Tuch dura^ nodules enable parts cf the rrorrrr to be 

thcrourhly tested without vnstinr tire in execution niu: cocrilrtion 

on other nieces of prorrair known to be in workinr order. 

If having developed a program we decide to change the method of 

solution of the differential equation,  if  the program is sufficiently 

modular tu * can be achieved by the simple substitution of one  form for 

another.    This can best be seen in a concrete example. 

Thus,   let us consider a one-r'lmensional plasma made up of electron 

and ion  (singly  ionized)  fluids whose distribution functions  satisfy the 

linearized Vlasov equations appropriate for a colllsionless plasma 
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ST + Sv  (veV + 57 (aeV 

äT + 57. Vt* + 57 («ifi> - °       J 
(21) 

where f . and f,  are the electron and ion distribution functions e      i 

v , and v.  are the velocities of the local elements of the fluids e      i 

a , and a  are the accelerations to which they are subjected. 

The accelerations ae> and a. satisfy 

Ve = "Vi -eE 

where 

57 = 4 ne J («e-f.)dv 

(22) 

(23) 

the velocities fß and v£  satisfy 

-eE 
m 

and 

övt 
dt 

—l  -    £E 
ot    m. 

1 

(24) 

The plasma is assumed collisionless, and the ions and electrons interact 

only in as much as each species contributes to the electric field which 

acts on both of them. 

To treat these equation.'; by a finite difference method was advoca- 

ted by Kellogg in 1965  .  Of course several other methods have been 

advocated and implemented tor this, e.g. the Waterbag Model (for the 

history of this see Berk and Roberts 1967   , expansion in terms of 

(8,9) Fourier components and orthogonal polynomials     and the popular 

sheet/rod model developed by Buneman and D; wson  ' 

(12) This approach does have its drawbacks   , but is used here to 

illustrate the strength of symbolic techniques.  Such techniques could 

be used in the other cases also. 
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The computational steps are clearly 

solve Poisson's equation; 

ion fluid advected; 

Electron fluid advected; 

i j 

For a leapfrog scheme, the advection of the equations can be 

gathered together into a single procedure (Fig.9). 

'PROCEDURE'LEAPFROG;     'BEGIN'DT'O.SiDELTAT; 
'FOR'I'EQUAL'IPl'STEPTUNTIL'IPa'DO' 
'FOR'J'EQUAL'JPl'STEP'l'UNTIL'^'DO' 
'BEGIN'DEFINE 0; 
NEW FE[O]»FE-DT*(DELX(VE*FE) + DELV(AE*FE)); 
NEW Fl[o]-Fl-DT*(DELX(VI*FI) + DELV(AI*FI)); 
'END'; 'END'; 

Fig. 9 

IP1, IP2, JPi, JP2 are the bounds for I and J. FE is a procedure 

which returns the value of the electron phase fluid density appropri- 

ate for the current lattice point.  It should be added that these 

difference equations, although apparently a forward difference in 

time, are actually centred in time and space. The procedure DT is 

set to 0.5*DELTAT where DELTAT is the time step interval. As quanti- 

ties are defined on a staggered mesh, they are available at the correct 

cime level when required: 

Thus in this case we may write simply 

SOLVE P0ISS0NS EQUATION; 

LEAPFROG; 

in the Symbolic equations module. 

For a two-step Lax-Wendroff scheme, provisional values at an inter- 

mediate timestep must be calculated. The module could take the form of 

Fig. 10. 
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•PROCEDURE' AUXILIARY CALCULATION;   'BEGIN'DT . DELTAT; 

'REAL'•PROCEDURE' ELECTRON PHASE FLUX; 
ELECTRON PHASE FLUX « DELX(VE*FE) + DELV(AE«FE); 

'REAL "PROCEDURE'  ION PHASE FLUX; 
ION PHASE FLUX - DELX(VI*FI) + DELV(AI*Fl); 

•REAL' 'PROCEDURE' FE NEW; 
'S NEW - SAV(FE) - DT'ELECTRON PHK°^ FLUX; 

•REAL"FROCEDURE' FI NEW; 
FI NEW - SAV(FI) - DT'ION PHASE FLUX; 

FILL   THE AUXILIARY POINTS'.' 
•FOR'  I   'EQUAL'  IP1   'STEP'  1   'UNTIL'  IP2  'DO* 
•FOR* J 'EQUAL' JP2  'STEP'  1  'UNTIL' JP2  'DO' 

'BEGIN'    DEFINE 0; 

C - 2; NORTH - O+DOY; 
NEW FE[NORTH] - EP(FE NEW); 
HEW FI[NORTH]  - EP(FI NEW); 

SOUTH . 0-DOY; 
NEW Fl£SOUTH] - EMfFE NEW); 
NEW Fl[ SOUTH] - EM(FI NEW); 

CC - 1;  EAST    - 0+DOX: 
NEW FE[EAST]    » EP(FE NEW); 
NEW FI[EAST]    - EP(FI NEW); 

WEST    . O-DOX; 
NEW FEtWEST]    - Bl(FE NEW); 
NEW FI[WEST]    - BI(FI NEW); 

•END'; 

Figure 10: A 'procedure'  AUXILIARY CALCULATION,  for use in a 

2-step Lax-Wendroff scheme.    Procedures FE NEW and 

FI NEW contain a clear statement of hew the first 

step of the scheme works. 

In this case the Symbolic equations module contains 

LAX WENDROFF TWO STEP'.' 
SOLVE POISSONS EQUATION; 
AUXILIARY CALCULATION; 
SOLVE POISSON FOR AUXILIARY VALUES; 
LEAPFROG; 

Provided the modules have been properly constructed, the change from 

one numerical difference scheme to another simply requires the replace- 
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ment of one set by another (e.g. the Lax-Wendroff module is replaced 

by the leapfrog one). This makes the comparison of the different 

methods over such matters as speed, gross accuracy, and in particular 

velocity dispersion, a fairly straightforward matter. With the develop- 

(13) 
ment of advanced methods such as Fromm's    hybrid Lax-Wendroff the 

close monitoring of methods becomes of greater interest. 

Conclusions 

Many programs could be written with less wear and tear on the 

physicist (and with shorter development times) by adopting methodical 

techniques of prefabrication such as those described here. 

The use of symbolic methods provides a way of defining a physical 

problem clearly in computational terms. Algol and Alf.ol-like Ian; ages 

are well suited to the symbolic approach especially for the parts of 

program dealing with the logic and the physical equations; in Fortran 

a control package for time-dependent problems, and the use of pre- 

fabrication with acceptance tests has been successfully introduced. 
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APPENDIX 

A UNIVERSAL CONTROL PACKAGE FOR FORTRAN PROGRAMS 

Many time-dependent simulation programs are currently being written, 

and most of these are still programmed In Fortran. Whatever the speci- 

fied set of differential equations may be, these programs usually have 

to carry out the same control processes, and the same general steps In 

the calculation, e.g. 

DEFINE INITIAL CONDITIONS 

START THE RUN 

INITIAL OUTPUT 

and so on. Often this part- takes longest to write, and Is hardest for 

newcomers to understand. 

A Universal Control Package (UCP) Is therefore being written at 

Culham which will contain a main control subroutine MAIN, together 

with utility and diagnostic subroutines, and which will form the 

foundation upon which a variety of actual simulation programs can 

subsequently be built. The package Is being written In ASA Fortran, 

so that It can be used on any computer system with only trivial modifica- 

tions. Because of this standardisation of the structure, It should be 

easier for collaborating groups to exchange programs. 

So far as possible UCP shares a common structure with DUMMYRUN, 

e.g. the Algol Procedure calls of MAIN CONTROL appear as comments In the 

UCP routine MAIN. (Fig.11). UCP Is however less general, because there 

are no analogues for the symbolic modules which deal with vector algebra 

and analysis. 

Development and Diagnostics 

It has been found useful to 'grow' an actual simulation program 

from UCP like a tree, checking It out at each stage by means of both 

standard and ad hoc diagnostic subroutine». Typical examples of 
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SUBROUTINE MAIN 

MAIN CONTROL 

COMMON/COMUCP/ 
1 NONLIN,      NOUT,        NPRINT, 
2 NSTART,      NSTEP,      NSTOP, 
3 DELTAT,      T 

NREAD, 

c~. 
CL 
C 
C 

1                   PROLOGUE 

LABEL THE HUN 
CALL LABHUN 

CALL REPORT(l.l) 
C CLEAR VARIABLES AND ARRAYS 

CALL CLEAR 
CALL REPORT(l,2) 

C SET DEFAULT VALUES 
CALL PRESET 

CALL REPORT(l,3) 
C DEFINE DATA SPECIFIC TO HUN 

CALL DATA 
CALL REPORT(l,4) 

c SET AUXILIARY VALUES 
CALL AUXVAL 

CALL REPORT(l,5) 
c DEFINE INITIAL CONDITIONS 

CALL INCOND 
CALL REPORT(l,6) 

c START THE HUN 
CALL START 

CALL REPORT(l,7) 
c INITIAL OUTPUT 

CALLDSHAY(l) 

c 
c 

CALL REPORT (1,8) 

CL 
C 

C 

C 

C 
C 

2 MAIN CALCULATION 'OOP 

DO 20 NSTEP-NSTART.NSTOP 

T-T+DELTAT 
ADVANCE ONE TIMESTEP 

CAU STEVON 

OUTPUT IF REQUIRED 
CALL DSPLAY(2) 

20        CONTINUE 
CALL REPORT(l.Q) 

\ 

CL 
C 

EPILOGUE 

NSTEP^STOP 
FINAL OUTPUT 

Figure 11: The UCP FORTRAN routine MAIN.    The structure is 

similar to that for MAIN CONTROL in DUMMYRUN (using ALGOL) 
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Standard subroutines «re 

ME£AG£    Print a message of up to 48 characters 

WAR      Print 'NAME - < Integer value >' 

RVAR      Print 'NAME • < real value >' 

while a useful ad hoc subroutine Is 

CLIST     List names and values of all common non- 

subscripted variables in alphanumeric 

order, using IVAR and RVAR 

These subroutines allow information to be extracted very easily at 

critical points of a test run by inserting single cards, without the 

need for format statements. Preferably, all the diagnostic tests 

are grouped together in a single ad hoc subroutine REPORT, which is 

called at suitable intervals by the main part of the program (Fig. 11). 

In this way, the program itself remains undisturbed. 

For illustration, we consider the development of the FORTRAN 

version of TRINITY  . This is now being generalized so chat it can 

deal with a 60x60x60 mesh. The SMbytes of data will be stored on 

2 IBM 2301 drums on an IBM 360/91 configuration, and transferred in 

and out of the core each timestep, using a rotating quadruple buffer, 

(4) 
a generalisation of the triple buffer used in GALAXY  . Of these, 

three sections of the buffer deal with the central plane (0) which is 

being calculated, and those on either side (N and S) which are needed 

by the difference scheme. The fourth or 'move' section (M) handles 

the data transfer  During the first part of the calculation of each 

plane, data is transferred out from the far-south plane (FS) on to the 

drums on two separate channels. Halfway through, the direction of data 

transfer is switched to bring data in for the far-north plane (FN). 

The logic of such a scheme Is quite complex, since it Involves 

the alternation implied by the leapfrog difference scheme, as well as 

periodicity, guard points on the borders, rotating buffers, switches 
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im (IM direstion of data flow, and keeping count of the location of 

360 separate tracks on the drum. The logic can however be checked 

oat independently of the pay»let, and, to e large extent, without «ny 

actual transfer of data. To do this, we replace those subroutines 

which do the actual work by dummies^ which simply print out Messages 

saying what tley are aeaat to do - a 'rehearsal' for the real calcula- 

tion, as it were. A saall aesh can also be used for the tests, so 

that not too auch printout is generated. Fig.12 shows an example, 

for which the GO step occupied only 0.28 sees of IBM 360/91 CPU time. 

The first two sections print out names and values of the variables in 

the Common blocks COWSR, COMDCP by means of statements 

CALL CLISTM 

CALL CLISTU 

while section 3 is generated by subroutines called by MAIM. Section 4 

monitors the logic of the calculation, using a 4x6x8 mesh. The output 

is generated by statements suet as 

CALL IVAtCRlOW'.J) 

CALL IVAxCS-PLANE'.MCS) 

Using this type of methodical approach, it is being fcund that programs 

can be checked out much more quickly and economically than by the 

usual methods. 
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MESH BLOCK 

0.10OE 00 NONLIN 

:ONTI toi . BLOCK 

DS = 6 
I = 0 NPhINT = 6 
J a 0 NREAD = 5 
K. = 0 NSTART ss 0 
L » 0 NSTEP - 0 
N = 0 NSTOP = 2 
NFIPT m 2 DELTAT = 0.1000E 00 
NI a 2 T = 0.0 
NU 

_ 
0 
4 NJ 

NK = 6 ROUTINE = 1,  POINT    = 7 
NW s 0 OUTPUT = 1 
PI a 

a 
4 

24 
ROUTINE = 1,   POINT    = 8 

PIJ STEP = 0 
PIMIN1 a 3 S-PLANE a 2 
PJ a 6 O-PLANE = 3 
PJA * 3 N-PLANE a 0 
PJB a 4 M-PLANE a 1 
PJNIN1 a 5 STORE C-PLANE ON DRUV 
PK M 8 C-PLANE = 1 
PKMIN1 a 7 D-PLANC = 5 
S 0 CALCULATE  ROW 
SE a 0 ROW = 2 
SIZE a 0 PLANE = 2 
U a 0 I-FIRST = 2 
w ■ 0 CALCULATE  ROW 

ROW = 3 
PLANE * 2 
I-FIRST = 3 

FETCH D- -PLANE  FROM DRUM 
C-PLANE X 1 
D-PLANE « 3 

Figure 12      Output from test runs for TRINITY using a small number 

of me.nh points for which the structure is checked jut. 
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Wave Kinetic Equation Emulation by Numerical 
Paröde-in-Cd! Simulation Methods 

F. D. Toppen. W. J. Cole. R. H. Hanfe, and N. J. Zabmfcy 
ÄrÄ Telephone Lubonuoriex. Incorporated 

Whippany. New Jersey 

The wave kinetic equation has been used in the 

theory of nonlinear propagation of acoustic waves in solids , 

surface gravity waves in liquids^, and various types of 

waves in plasmas .  This equation describes waves in terms 

of a quasiparticie phase space distribution function f(x,k,t) 

which obeys a Boltzmann-like kinetic equation: 

3f  3w 
3t  3k fi-fr- |f-cE(f,f) + cI(f), (i) 

where w(x,k) is the linear dispersion relation, C,. represents 

the elastic wave-wave collision (scattering) Integral, and CT 

accounts for inelastic collisions (aisorption and emission of 

waves). In practice, conditions may occur such that the wave 

collislonal mean free paths are very lar£.e, tut collective ef- 

fects associated with the nonlinear frequency shifts cannot be 

neglected.  Assumirg that the nonlinear dispersion relation 
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has been determined to be m - w(x,k,p), one then obtains 

the eolllslonless, self-consistent wave kinetic equation 

(SCMSE): 

5t*5k    3I-V?x*B5xj    5k"0' '2; 

»here p(x,t) ■ |f(x,k,t)dk, and 0 ■ 3u/3p. A detailed 

discussion of the derivation and properties of SCWKE is 
4 

given elsewhere . In this paper, we study in depth the 

5 6 7 numerical particle-in-cell (PIC)3* *' method as applied 

to the solution of Eq. (2). 

The basic idea is to represent f in the form of a 
a 

Klimontovich distribution: 

f( x.k.t) - ^ 6(s.x1ct>)a(k-k1 
i-i 

tt)). (3) 

In a Lagrangian manner, f is convected by numerically 

integrating the quasiparticle equations of motion, 

at ?i - 5k7 * at Ui 
3w 
3x ti 3*i 

<0 

\ 
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Self-consistency is assured by recomputing p(x,t) at each 

tine on a fixed (Eulerlan) spatial lattice. HeuristAcally, 

one expects that this method produces an approximation which 

converges, in some sense, to the solution of the SCWKE as 

N * ". The present paper presents a first careful study 

that will provide guidance to determine convergence of 

PIC methods. 

The above described approach has been investigated 

by applyfng it to the propagation in a plasma of trans/erse, 

linearly polarized, plane electromagnetic waves as modeled 

by the equation 

A«. - c2A„ + ml(l+e^/raV^"* A - 0, 
6 6 ÄA      p 

(5) 

where A is the vector potential, c is the speed of light, 

u is the plasma frequency (here taken to be constant), 

and e and m are the electron charge and mass. The non- 

linear effect in Eq. (5) arises from the relativlstic 

increase in electron mass. For small-but-finite field 

amplitudes, the nonlinear dispersion relation which fol- 

9 10 
lows from Eq. (5) is given by ' 

«V ♦ w: k-^l (6) 
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Wave Kinetic Equation Simulation 

« 
where angular brackets denote an average over the high 

frequency oscillations (the wave envelope is assumed to 

vary slowly). After normalizing f to 

f(x,k,t)dk - p(x,t) —f-Tj- <A2(x,t)> , 
m c 

(7) 

the SCWKE becomes 

3f) 3f   ,   cHc  3f   ,   jMp  83  3f 
at-   T     ,.,     a»  ■*■   577    a-   at. 3t 3x  Bw  3x 3k (8) 

In order to validate this method;, the following 

basic questions should be answerei:  first, how well do 

solutions of the SCWKE approximate solutions of Eq. (5)?, 

and second, how well does the PIC technique approximate solu- 

tions of Eq. (8)? We have therefore studied in detail two 

problems where solutions of the SCWKE can be obtained 

analytically:  1) linear dispersive spreading of Gaussian 

wave packets; 2) nonlinear stationary wave packets wherein 

nonlinear self-trapping balances dispersive spreading. 

This is not a statistical average a." we are concerned here 
with coherent waves. A more precise definition can be given 

4 
in terms of the analytic signal concept. 
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1. After linearizing Eq. (5) at zero amplitude 
2 

(eA /mo * 0), one obtains the following asymptotic solution 

for Gaussian wave packets (k o >> 1): 

k{*>" '  AO(O^T) 
i 

exp 
(x-ck0t/u0)' 

2a2(t) 
cos(k0x-wot+qt),  (9) 

where i»>0 ■ (koc2+wp) ' °2^  " °2 + c «\2Aro2, and q 

is a complicated function of x and t. The corresponding 

asymptotic solution of Eq. (8) is 

,(X,k't} "w) sT^Pp^-^^-^-^o^o-V2^-^)^)2/0 

(10) 

and 

mc / 

(x-ck„t/w^)2/o2(t) 
P(x't)miß)   5*7 e (li) 
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I 

We see that p(x,t) ■ e ^Ay/m o , which demonstrates that 

the wave kinetic equation is able to describe correctly 

dispersive spreading, a coherent wave process . Pig. la 

shows the result, r.t several different times, of a numerical 

integration of Eq. (5) using a finite difference technique. 

The initial conditions agree with Eq. (9) and eA /mc2 + 0. 

At the bottom of each diagram is the numerically computed 

contour plot of f(x,k,c) as calculated directly from its 
h 

analytic definition at each time. Corresponding PIC 

calculations are shown in Pig. lb (random loading) and 

Fig. lc (uniform 'oading). The rms pulse width as obtained 

from the PIC simulation is compared to the above theory in 

Pig. 2, which shows the excellent agreement. 

2. Asymptotic solutions of Eq. (5) with a stationary 

envelope (called "envelope solitons", or for brevity, E-solitons) 

11 12 
can be found following the method of Karpman , and Taniuti , 

et al.  to be 

A(x.t) ■ A  sechl o " 

/x-c2k t/o>A       I 3u2    /eA  \2 1 

(12) 

•        3 
Kadomtsev states a contrary opinion, 
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Fig. 1. Dispersive spreading of a linear Gaussian wave packet, a»£/c k„ = 0.2, 
k0o = 5. (a) Numerical solution of Eq. (5), ck0At = k<>Ax = 0.1. Also shown are 
contours of f(x,k,t) = const, (levels are separated by a factor of two), (b) PIC 
solution of Eq. (8) with random loading, ckoAt • koAx = 1.0, N = 2000. The den- 
sity is also shown together with a Gaussian fit. (c) PIC solution of Eq.(8) with 
uniform loading, otherwise same as (b). 
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900 
TIME 

Fig. US. Dispersive spreading of a linear Gaussian wave packet, 
»2/cM a °«2> k0» = 5« Standard deviation (in units of l/k0) vs. 
tune (in units of 1/cko). Conditions same as in Fig. 1. Solid 
line: theory and numerical solution of Eq. (5), weighted with the 
energy density. Circles: PIC with random loading. Triangles: 
PIC with uniform loading. 
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where o ■ 4c/[/J u» (eA0/mc )], a is an arbitrary constant, 
2 

and we have assumed that k a » 1 and eA/rac    is small but o o 

finite. The corresponding solution of the SCWKE can be 

found following the method of Bohm-Gross J and Bernstein- 

Green-Kruskal . Assuming narrow bandwidth (Ak/k « 1) and 

no untrapped quaslpartlcles, stationary solutions of Eq. (8) 

are given by 

f(x,k,t) o ; a 

1' , mc 
p(x-ckQt/u)0) "&S 

i% 

o2(k- V (13) 

and f ■ 0 where the radlcand is negative. Here p< fdk 

is an arbitrary function and o is given by the same formula 

2     2 
as above. Choosing p(x) - %(eA /mc ) sech (x/a), gives the 

E-soliton corresponding to Eq. (12). Fig. 3a shows a numerical 

solution of Eq. (5) having Initial conditions in agreement 

with Eq. (12) and eAQ/mc * 0.25. Kote, that although 

wavelets move through the packet, the envelope and phase 

space distribution are stationary. The corresponding PIC 

simulation Is shown in Fig. 3b. The observed statlonarity 

of the density (the particles of course execute a vortex- 

like motion in phase space) is remarkable. 
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Fig. 3. Stationary E-solution. »2/cak§ = 0.2, eA0/mc3 = 0.25, k^ = 8.5. (a) Nu- 
merical solution of Eq. (5), ck<)At = koAx = 0.1. Alto shown are contours of 
f(x.k.t) = const, (levels rre separated by a factor of two), (b) PIC solution of Eq. 
(8) with uniform loading, ck0At = 2k0Ax = 1.0, N = 6700. The density is also shown. 
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The availability of exact nonlinear solutions of 

the SCWKE provides an opportunity to study in depth various 

techniques associated with the PIC method. The following 

areas have been investigated theoretically and by numerical 

experimentation: 

1. Initial loading: Given f(x,k,o), how does one 

choose the initial quasiparticle coordinates 

and momenta, x. and k,, i = 1,2,...,N? We have 

used random, semi-random, and several uniform 

loading methods in order to reduce fluctuation 

levels. 

2. Self-consistent force computation. It is necessary 

to smooth the interaction in some way to reduce 

the discrete particle effects. We have used "area 

weighting", "force interpolation", and Fourier 

transform smoothing (equivalent to extended particles). 

3. Time integration (stability, truncation and roundoff 

error accumulation). Using a centered, second-order 

leap-frog scheme, we have observed that when cAt/Ax > 4 

a strong numerical instability develops which conserves 

energy but throws the quasiparticles into a low entropy, 

highly structured (oscillatory) state. 
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4. Cell size and number of quaslpartlcles. Given 

the Initial condition, how does one choose the 

optimal Ax and N? We have found that when N-Ax/a 

is sufficiently small, large fluctuations develop 

which lead to instability. 

In summary, we have demonstrated that the SCWKE 

together with PIC numerical techniques provide an efficient, 

versatile, and powerful method for solving a variety of problems 

concerning nonlinear wave propagation. 

We would like to thank R. J. Mason for helpful 

advice about PIC techniques. 
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Three-Dimensional Numerical Experiments 
on Penetrative Convection in a Rotating Fluid* 

Steve A. Piacsek 
Applied Mathematics Division 
Argonne National Laboratory 

Argonne, Illinois 

ABSTRACT 

Numerical experiments were performed to simulate convection 

current., that arise when fluid in a rectangular geometry is rotated 

with constant angular velocity and cooled with uniform heat flux 

both from above and below. The time development of the mean-square 

vortlcity components showed equipartltlon for circulations in all 

planes. The convection rolls with axes parallel to the x- and 

y-axes exchanged energy for about 5 cycles, whereas the cyclonic 

circulations about the vertical axis maintained the same energy as 

the mean of the rolls. 

A comparison of th« isotherms with circulation 'Ines showed 

that the strong divergence of horizontal motion, in regions of 

falling blobs of cold fluid from the gravitatlonally unstable top 

layer, is responsible for the generation of vertical vortlclty through 

3w 
the Coriolis term 2Q T— . An examination of the horizontal planforms 

of motion revealed .he existence of a weak, four-lobed Jet stream 

meandering around four centers of strong, closed cyclonic circulations. 

Supported by the Office of Naval lesearch under contract #N00014-67-A- 
0242-0003. 

211 

Preceding pagi Mink 

Bmm •*•*•* n,i mi II ■ Wsum 



Piacsek 

TMtEE-DIMEKSIOKAL NUMERICAL EXPERIMENTS ON PENETRATIVE 
CONVECTION IN A »OTATING FLUID 

I. Introduction: 

Many altuatlona occur in nature in which the convection currents 

that arise in gravltatlonally unstable fluid layers are bounded below 

or above by positively or neutrally stable layers. In the former case, 

the stable layer is penetrated to a certain extent by the rising or 

descending thermal coluans but remains stable on the whole. In the 

latter case the convection currents will soon involve all of the acces- 

sible fluid voluae. 

Soae of the natural phenomena that exhibit such processes are the 

atmospheric thermals and cumulus towers impinging on stably stratified 

layers above, including inversions and the tropopause; evaporation- 

driven ocean currents penetrating into lower regions stably stratified 

by solar radiation, or seasonal cooling effects reaching down to the 

thermocline; convection in the sun and stars in layers where radiation 

causes a super-adiabatic temperature gradient, bounded both below and 

above by stable layers. Often the penetration current« are coupled to 

larger-scale general circulations, and their mutual interaction is of 

great Interest to geo- and astrophysicists. 

When the scale of the convection currents is sufficiently large 

(L >> 10 m In the ocean or L » 50 m In the atmosphere) the Coriolis 

force due to the ear'h's rotation provides the main balance to the buoy- 

ancy forces. On such 1. ngth scales the nonlinear advectlve terms and 

the friction terms play only a secondary role and the resulting motion 

is railed "geostrophic."1 
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Penetrative Convection in Rotating Field 

Geostrophic motion that is driven by buoyancy forces due to 

horizontal temperature gradients in also known as the "thermal" wind, 

and its associated instabilities as "baroclinic instabilities." 

Most commonly known forms of these instabilities occur in cases where 

the thermal wind is a result of eeternally apnlied horizontal tempera- 

ture contrasts, the atmospheric jet stream may be regarded as an ex- 

ample of such "strong" baroclinic instability, meandering between warm 

southern and cold northern latitudes in an easterly direction. But 

horizontal temperature contrasts can also result b^twean up- and down- 

moving thermals in convection due to vertically imposed heat fluxes or 

temperature contrasts; the corresponding thermal wind may give ris* to 

a "weak" baroclinic instability. A weak jet connecting or circumventing 

a group of closed circulation cells or cyclones is an example of such 

instability. 

Geophysical fluid dynamicists have attempted and succeeded to model 

these Instabilities in the laboratory and on the computer by designing 

experiments in which the relevant non-dimensional pa-ameters have been 

chosen to approximate the values that are associated with the correspond- 

3-8 
ing natural phenomena.    These parameters will be defined in the 

following section where the governing equations are Introduced and non- 

diimenslonallzed. The advantages of such model experiments are the strict 

control which can be exercised over the parameters determing the flow, and 

the possibility of isolating the several concurring processes to study 

each separately. 

The present numerical experiment deals with a situation in which a 

stably stratified fluid is cooled from above and undergoes rotation at the 

same time. Heating from below would lead to an identical dynamic situa- 

tion. Corresponding natural phenomena are: 
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a) the top layer of the ocean (say 200 m), cooled by evapora- 

tion and Infra-red radiation at the surface and stratified 

by solar radiation and sensible heat exchange [i.e., molecular 

warming by the air); 

b) the bottom layers of a planetary atmospl.eie v'say 5000 m), 

heated at the surface by solar radiation and «'.ably stratified 

by advective and other radiative processes. 

The main purpose of the experiment is to exhibit the existence of a 

"weak" jet stream that connects cyclones of strong circulation about the 

downward plunging cold thermals from the surface. 

The vorticity/vector potential approach has been chosen for formu- 

lating the three-dimensional flow problem, since tha fluid is assumed 

to be incompressible and located in a simply-connected, cartesian geometry. 

This approach has some advantages over the velocity-pressure ("primitive") 

form of the hydrodynamic equations, where the nonvanishing of the divergence 

v»u » V  due to round-off errors can cause conservation problems in the ad- 

vection terms 8-10 

II. Governing Equations and Nondimensional Parameters: 

The fluid is assumed to be contained in a rectangular volume bounded 

by planes x - 0,L, y ■ 0,L, and z » 0,D. The rotation vector a  points 

along the positive z-axis and the gravitational acceleration g along the 

negative z-axis. In a cartesian coordinate system rotating with angular 

velocity a  the Navler-Stokes aquations for viscous flow may be written 
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~^+ (u'V)u + 2flxu    - -Vp + uV2u - Pg z () 

The equations of continuity and thermodynamic state are replaced by 

the so-called Boussinesq approximation, in which the fluid is assumed 

to be incompressible in all terms of equation (1) except the buoyancy 

;enn, uvd  the density depends linearly on the temperature. Thus 

7«u (2) 

p - po[l - O(T-TQ)] (3) 

where p and T are the ambient density and temperature of the flu-d. 

In this approximation (1) may be I »written as 

|£ + (u«v)u + 2&<u - - 5£ + vv2u + ag(T-T )z W 

with v - y/p being the coefficient of kinematic viscosity and a the 

coefficient of thermal expansion. For the same approximation the equation 

of heat transfer becomes 

|£+ (u-V)T -KV2T (5) 

where K ■ K/p c is the coefficient of thermometrlc diffusivity. Both o p 

diffusion coefficients are assumed to be independent of temperature as 

these variations play only a minor role in the flow mechanisms. The 

following dimensional scaling is Introduced now for all the physical 

variables [u,v,w being components of the velocity vector] 
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(x,y) - L(x',y») p - P.p' 

z » D»z' t - ft* 

(u,v) - U(u',v') 

w • W«w' 

T-T    - AT«r 
0 

(6) 

From v«u » 0 it follows that r a n ard that ("*^)" " n  (u'*V')u. By 

introducing the nondimensional operators 

3x'2  3y'2/  3z'2 

equation (A) may be written «dropping the primes) 

(7(a)) 

(7(b)) 

3u ^ WT ,-► 
^ + r (u-?)u + T2fl(zxu) Z— ^.p + «I v,2- 

Po" L     D2 

. agAT«T  _ + w—* T 
(8) 

The time scale t is chosen to be that of momentum diffusion, and the 

velocity scale W that of advection balancing it, i.e., 

B2 v poUvL 

D2 (9(a,b) 
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Then (8) becomes 

3u 2flD2 3u  .   /*■ *.-»■  .   ZAP*     " +. j£ + (u'V)u + -^—  Nzxu) 4'p + V2«" + S^tSL . x 
«2 

(10) 

and the heat equation 

|I+ <uV$)T-^. V'2T . (11) 

The following definitions are customary: 

Grashof number Gr - a8AT,P3 

,,2 
(12(a) 

Taylor number Ta AßV 
(12(b)) 

Prandtl number Pr - K/V . (12(c)) 

The final form of the transport equations becomes, therefore 

H + (u«v")u + JFZ • (»<u) - - v"'p + V,2u + Gr • T (13) 

!£+ (u«v)T -~ ■ V,2T, (14) 

Operating on (13) with the curl $'H and defining | - V'xu yields 

|| - $• K (ux?) + /U  • ~ + 7,21 + Gr • (v*T x) (15) 
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where the relations (Vxu)xu » (u«V)u - V ■=— and V«u » 0 are used to 

obtain the first and second terms on the right-hand-side, respectively. 

Stratification is achieved in this experiment by cooling the 

bottom at. the same rate as the top, so that the stabilizing and de- 

stabilizing forces have the same magnitude and afford an optimum observa- 

tion of penetrative convection. The surfaces are assumed to be "frictionless 
3u,, 

lids," i.e., non-deformable, stress-free surfaces where u ■ 0,    - 0 
n      oil 

(n - normal, 11 - tangential). Under these conditions the tangential 

components of the vorticity also vanish and the condition on its normal 

-»• -*■ 

component follows from V*g = 0. The kinematic boundary conditions may 

therefore be summarized am 

3u 
II 

3n 

3g|l 
3n on all surfaces. (16) 

The lateral walls are assume*, to be thermal insulators and the tempera- 

ture gradient is fixed at the bottom and top surfaces. The thermal 

boundary conditions become thus 

f-0 3n 

3z  1_ 

x - 0,1; y - 0,1 

z  - 0 
respectively. (17) 

Finally, the introduction of a vector potential u » vxtji leads to a 

simple relation between the velocity and vorticity components.   Letting 
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X - $xS - $ x #4) -*vVt> - v2} (18) 

and introducing the gauge V«i £ 0 (there are no sources of motion other 

than that associated with vorticity) leads to the simple relations 

h " ~V\' ui " ^i»    l "  1>2»3 (W) 

which are very suitable for numerical solutions, either by relaxation 

or fast Fourier-transform methods. The boundary conditions on $.  are 

subtle and must be discussed carefully. Hirasaki and Heliums have 

12 
shown  that if no fluid enters or leaves the volume (i.e.. u = 0 

' n 

everywhere) the parallel components of i|i vanish at each point of the 

surface raid the normal component then is determined from the gauge 

*•* - o. Thus 

"II 3n on all surfaces (20) 

Finite-difference versions of (14), (15), and (19) have been programmed 

for a digital computer; the difference schemes employed and their 

properties are discussed in Appendices A and B. 

III. Choice of Parameters and Initial Conditions: 

The values of the governing parameters for the experiment were 

mostly determined by the number of mesh points and corresponding reso- 

lution that was available on the computer used, a CDC 6600 with a 
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64,000 word (60-bit) memory. To represent adequately the flow at 

large Grashof and Taylor numbers and to ensure numerical stability 

and accuracy, the mesh size must be chosen small enough to resolve 

thu thinnest boundary layers present in the system. In this case 

they are associated with heat conduction and the interaction of rota- 

13 tion with viscous diffusion, the so-called Elaaan layer.   A simple 

scale analysis of (13) and (14) shows the relevant boundary layer 

thicknesses to be given by 

6T ■ (Gr. 0)-* (21(a)) 

6E = Ta (2Kb)) 

where 0 is the prescribed surface temperature gradient; 0, Ta and Gr 

are defined in (12). 

The maximum mesh size that could be fitted into the computer was 

20x20x10, with the horizontal dimensions accentuated to simulate the 

natural phenomena. Since both the Ekman layers and thermal boundary 

layers lie along the horizontal surfaces, the mesh spacing Az in the 

vertical direction is chosen to be half the horizontal mesh spacing 

Ax - Ay. To have the non-dimensional height unity a choice of Az - .1 

must be taken, with Ax - Ay » .2. The total geometric height-to-width 

ratio therefore becomes D/L - 1/4. If the criterion of Az « &-,6„ is 

taken to ensure proper resolution and stability of the system, the 

corresponding values of Gr. 0 and Ta should be S101*. Actually, the 

e-folding distance of boundary layer decay is larger than the expressions 

g'ven in (21) by factors of *  and /2, respectively,  so that the resolu- 

tion is much better than the above criterion implies. 
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Initially the fluid is taken to be homogeneous and the cooling is 

turned on at t ■ 0. No attempt is made in the experiments to determine 

the minimum time in which the resulting nonlinear temperature profile 

would yield convective instabilities due to a given finite-amplitude 

perturbation. Several authors have studied this problem in certain 

15 16 17 18 
laboratory experiments '  and also theoretically. '   By choosing 

the amplitude range of the horizontal temperature perturbations from 

-4    -3 
10  to 10  times the temperature difference between the cooled top 

and the (yet) unaffected interior, finite-amplitude convection results 

in each case with a rapid, monoton!c increase of the kinetic energy. 

The form of the initial perturbations is that of white noise, i.e. 

T'(x.y.z) - A e 
-(D-z)/H 1_ 

MM 

IN MM \ 
][    cos (nirx)ll    I    cos (mity)l 

\a-l /\m-l / 

(22) 

The scale height H is so chosen that most of the perturbation is con- 

fined to the top region where the natural noise is likely to originate; 

this also ensures that in most of the volume T'(z) is small compared to 

T(z) - T , T being the initial ambient temperature of the homogeneous 

fluid. The number of Fourier modes N and M is limited by the considera- 

tion that at least 2, but preferably 3 or 4, mesh points are needed to 

numerically resolve the smallest wave lengths. 

IV. Results and Discussion 

The results of the numerical experiments are presented In two 

ways: by plotting the isolines of the vorticity components and tem- 

perature at successive intervals of time, somewhat in a movie-like 

fashion, and by plotting the total mean-square vi ticities associated 

with the circulations in each coordinate plane as a function of time. 
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The particular case presented here has the parameter values 

ß ■ 1, Pr - 7, Gr - 4000 and Ta - 10000 assigned to it. Based on a 

comparison with other rotating convection experiments, the effects of 

rotation were expected to be only moderate and the results are 

surprising. 

An examination of Figure 1 reveals several interesting facts. 

There is clearly equipartition between the three modes of circulation. 

The x-rolls and y-rolls (i.e., convection rolls with axes parallel to 

these directions) exchange energy for about S cycles, each of period 

t « .2 (in units of L2/v, momentum diffusion time) and the z-rolls 

(actually a group of "cyclones" as seen in Fig. 5-8) grow monotonicly 

at exactly the same rate as the mean of the x- and y-rolls. At t' ~ 1.2 

some abrupt changes occur in the system. The x- and y-rolls stop oscil- 

lating  and start to damp out; the cyclones undergo a sharp drop end 

rise in intensity and then also settle down to viscous damping; the 

nature of this strong dip is not understood and can not easily be related 

to any visible changes in the flow. Lack of computer time prevented the 

system from being followed to its final steady state, but experience with 

two-dimensional flows shows that after the oscillations, representing 

conversion between potential and kinetic energy of the system, damp 

out the system settles down to a steady state quite readily. In 

arriving at this steady state the time of thermal diffusion is 

probably more important since it smoothes out the temperature con- 

trasts that drive the system, between the downward plunging cold 

blobs and the ambient fluid. 

The behavior of the total energy is best understood from an 

examination of the vertical cross-section of the isotherms as shewn 
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in Fig. 2. Initially the stable bottom layer is thin and the down- 

ward moving cold thermals can generate a lot of motion. As the 

bottom layer thickens, the region of instability shrinks; at the same 

time, viscous damping is beginning to act on the x- and y-cells and 

thermal diffusion begins to smooth the contrast between the thermals 

and the ambient fluid. The net result is a sharp decrease in the in- 

tensity of the circulation; evidently all three smoothing agents are 

making their effects felt at the same time. 

However, this behavior of the isotherms is not markedly different 

from the case of no rotation. The particular effects of rotation are 

most noticeable on the display of the horizontal circulation at 

various height levels. Figures 3 and 4 display the time development 

at the top level (top rows) and at the middle level (bottom rows). 

\ 

Fig.  1.   Total mean-square vorticity components (x, y and z) 
aa a function of time 
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f^ 

Fig. 2.   Vertical (x-z) ploto of the isotherms during oscillatory (top) 
and near-steady motion (bottom) 
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Tiw mit noticeable overall fMturaa of the circulation ara tha groupa 

af closed circulation oalla, nootly nunbering fro* 3 to 8 and nomally 

referred to aa cyclones la nnteoroloay or vortices in hydrodynamics, 

and a meandering, four-lebed sinusoidal jat atraan. In aotM frames 

■oat of tha linaa balong to tha eyelonaa and in some noat to the jat 

stream, indleating tha ralatlv« atrangth of tha two phononana. In 

tha type of baroellnlo instability found in rotating annuli aa 

described In rafaraneaa 9-0« «tout of tha streanlinea belong to tha 

jat atraan, whereae in thla axparlMnt thara la at noat aqulpartl- 

19 
tlon between tha two nodaa. Mason and Hide have observed auch 

«oak jata in a rotating etmulua in which ona of tha cylinders waa 

Insulating, ona eoolad at a fixed tanparature and the electrolytic 

fluid in the gap waa heated Internally with a current. If one thinks 

of tha jat atraan aa a conveyer belt rolling on the cyclones, the 

ferner eaae is analoguoua to a heavy belt driving son» light wheels 

and tha present ease to a light bolt driven by heavy whaala. Hence 

the notion of "strong" and "weak" baroclinic lnatablllty. 

A detailed examination of figs. 3 and 4 ahowa that jat atraan 

fomatlon la immediate and strong at tha middle level but dleappeara 

in the end to j ^d  to a fomatlon of 0 cyclenea. At tha top, on the 

th 
other hand, a jat atraan la not apparent until tha 3  frame end ends 

In a weak jet between four atrong eyelonaa. Tha •election of an n«2 

node la abvloua when the drastic constraint of a rectangular geometry 

la consideredt in cylindrical amuil "sodee with 2 to 13 lobes heve 

bean obaarvad. The withdrawal of the downward plunging cold themale 

toward the surface and their general weakening In tine Is probably ra- 

oponelblo for the vertical variation of these patterns. 

An exanlnatlon it  lige. 3 and 6 reveala the relation between 

tanparature and horlaontal circulation, and Indirectly shede cone light 
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Fig. 5. Horizontal plot of the isolines of the z-component 
of vorticity (left column) and temperature (right column). 
Top row represents surface level (z - 1.0) and bottom row 
middle level (z = . 50). Illustrates behavior during trans- 
ient (oscillatory) motion and Fig. 6 near-steady behavior. 
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Fig. 6* Horizontal plot of the isolines of the z-component 
of vorticity (left column) and temperature (right column). 
Top row represents surface level (z = 1.0) and bottom row 
middle level (z = .50). 
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on the origin of tha atrong cyclone«. The center of the eyeIon«a 

colncidea with tha canter of th» aami-circular laothermlc reglona, 

verifying the "thermal wind" relatlonahlp, i.e., the horisoueal 

temperature contraat driving a moticn that la conatralned to rotate 

by the Coriolia force. From (15) we obtain (ualng *•* ■ *«u n  0) 

|f - -(u-.fo + (!•$)* + Jtl • jj 
(23) 

«nd from continuity 

w-s? (24) 

Since reglona of downward plunging cold f.luid corraapond to atrong 

reglona of convergence, they alao corraapond to regions of atrong 

cyclone generation through the laat term In (23) which ia proportional 
to n. 
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Appendix Ai 

The finite-difference font of equations (14)-(17) will be pre- 

sented here. For a detailed dlaeueeion of Iterating in time the 

20 21 
initial-value problem the reader le referred to works by Richtmyer ' 

22 
and Lilly,  and for a discussion of differencing the nonlinear ad- 

23 vective tens and the property of conservation to works by Arakawa, 

2« 9 
Roberte and Wales,  and Piacsek and Williams. 

The tine coordinate is discrstised aa t ■ nAt and the space 

coordinates aa x ■ lAx, y ■ JAy, s « kAz, with n,l,j,k being integers, 

and denote the value of a dependent variable, say 4, at the discrete 

nesh points as +(x,y,s;t) ■ 4(iAx, JAy, kAz; nAt) • *!*... The follow- 

lng difference operators will simplify the expressions considerably: 

V*Is*> ■ <*S" *Iik)/At (A.l) 

.-,.n n+1 
V*ljk> - «♦w.jk - ♦£!.*>'"■ (A.2(.)) 

<<^k> " <U " 4liJk>'"« (A.2(b)) 

**«y - '♦iVi.jk+cu - *;3k - ♦i>**2     <
A

-
3

<-» 

8x*(*;Jk) - (e^tJk + 4;.liik - *;Jk - *«$**       a.*.» 

v*v - <*i+i,jk - ♦;.iijk>'2te (A. 4) 
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with similar expressions for &  , Sy , 6 , S  , etc. Other useful 

operators will turn out to be 

ijk   x   Ijk   y   ijk   z (A.5) 

SS - SX + SY + SZ (A. 6) 

and similar expressions for u»e and SS . 

The differencing of the advective terms follows the so-called 

"angled-derivative" method, first discussed by Roberts and Weiss  and 

q 
tested extensively by Piacsek and Williams.   Applied to a simple 

system, say -g* » - u T*- , this method takes the following expression 

n.     n  ,-/..n. 
Upsweep (i=l,2,...,I) S^ty  - - BJ • 6^) (A.7(a)) 

Downsweep (1-1,1-1 i) «t(^) - - uj • äx(*i+1)    CA.7(b)) 

The overall truncation error of this scheme over the complete time step 

is 

0(At2 + Ax2 + (At/Ax)2) (A.8) 

and linearized stability analysis (see, e.g., Chapters 4 and 8 of Richtmyer 

& Morton ) shows that its associated eigenvalues have amplitude unity 

and there is no limitation on the time step At. The scheme is therefore 

neither amplifying nor lamping, a very desirable property from the point 

of view of conservatir . Furthermore, it may be noted that the newly 
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generated values $        and $   may be stored in the locations for 

$. and $  , respectively, since there is no need for the latter 

quantities in the sweep once the former values have been computed. 

The storage of each physical variable at only one time level is 

21 
needed, therefore, as compared to two for the leap-frog method, 

and the total mesh size that can be employed with such a scheme is 

therefore doubled. 

The differencing of the diffusion terms follows a related scheme, 

the so-called "Saul'ev" scheme (p. 191-192, ref. 20). For a simple 

system such as r~ ■ —-*■ , this method takes the following form 
3t  3x2 

Upsweep (i-1,2 1) 6^$") » SX~(<t>") (A.9(a)) 

Downsweep (1=1,1-1,... ,1) S^fy  - Sx"1"«^1) (A. 9(b)) 

The overall truncation error of this scheme is also that given by 

(A.8) and there is no limitation on the time step. Admittedly, the 

error (At/Ax)2 is. poor unless At << Ax, but this is a price one pays 

for additional storage. The experiments showed that At - .1 Az yielded 

quite satisfactory accuracy and the time step was still larger by a 

factor of 6 than that allowed by the stability conditions associated 

with three-dimensional explicit schemes (Az ■ .1 In the present problem). 

Before the complete schemes for (I*',1 »nd (15) are written down the con- 

ditions V«u « V«£ » 0 are used to write the right-hand-side of (IS) into 

the "advective" form, i.e. 
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ae theee are more euiuble far the application« el the angled-derlvative 

aethed. The finite-differenead equation« beeose therefore (C»n»6 being 

the eaaponentg of the vertieity vector |)i 

(A. 10(a)) 

(A.lQ(b)) 

(A.11(a)) 

(A.11(b)) 

v* ■ <-MW>,« 11{.riv»ik + „. ^ _ (A,12(a)) 

(A.12(b)) 

(A.12(c)) 
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In eaeh relation ef (A,11) and (A. 12) the operators u'V and t'V 

have u evaluated at tine level n. This leade to a cancellation ef 
»2A oil 

cress-derivatives ef the type |*j» in the Taylor expansion ef fTt, 

ate., and leada to an error of (at/ex)1 rather than (at/Ax). The 

operate» f«t" and |«r have | evaluated at tine levela n and n+1, 

reapeetively, ae these are the cnly valuee available in eonputer 

storage. The uee ef the advanced values ef T in the buoyancy terse 

leada to stability regarding the internal gravity waves that arise in 

the system, and the velocity components «re evaluated at level n in 

the Gorlolis terms for lack of a better scheme, Actually, a very weak 

instability results from this choice ef time level but over the length 

ef time Iteration performed in these experiments, it did net seem to 

cause any difficulty« A better scheme would be to take the Ceriolls 

terms as TpVuijk + "ijk^' tov •*afflPle' but Sne valuee u??j| are not 

available in this explicit scheme and several iterative sweeps ever 

the whole system would be required to achieve this condition. 
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Appendix B: 

Here the solutions of equations (19) and (20), 

V2^ " -q ,    i - 1,2,3 

3*n 
iji. | » ~-r— »0  on all six surfaces 

will be discussed using discrete Fourier series. The expansion func- 

tions chosen are pure sine series in those directions which have 

Dirichlet conditions C,»^., " 0 associated with them; the Foisson equa- 

tions reduces then to a set of ordinary differential equations with 

Neumann conditions in the remaining coordinate. Thus, e.g., 5,I|J are 

expanded in discrete Fourier series 
25 

N N 
£ »    J    b  (x,y)  • sin nirkAz, iji    »    £    a (x,y)  • sin rnikAz 

(B.l) 

and again 

M M 
b (x,y) "    I    d  (x) • sin nmjAy, a (x,y) = £ c  (x) • sin ranjAy 

(B.2) 

where N « 1+1, M » 3+1 and I,B are the number of mesh intervals in the 

respective directions. For. s detailed discussion of this method see the 

appendix of Ref. 8. The resulting ordinary differential equations then 

have the form 
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d*c i2 

dx: 

dc 
Bgl 

dx 

(m2 + n2)Tr2c  - -d 
2 um   D 

at x - 0,1 

(B.3(a)) 

(B.3(b)) 

and may be solved in finite-difference form by the well-known "tridiagonal 

algorithm" (see p. 200 of Ref. 20). 
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Numtrieal Experimente on Spiral Structure 

R. H, Miller 
Umvmit* ttf Chfcäjtt> 

Chkntt», llttmm 

In preference to a survey ef various computations 

In astronomy, I shall eeneentrate en one calculation 

that haa lea» in the pest eeuple ef years, to the 

development ef computer models ef spiral galaxies. Two 

groups have been working in thia areai that ef Reger 

Meekney and Frank Mehl at NAfA Langley, and the group 

at the Initltute for Spaoe Itudiei in New York with 

Kevin frenderyast and William Quirk of Columbia Univer- 

sity » with whom I have been aasoeiated. These calculations 

have a lot in common with seme work in plasma physios 

computations—indeed, Heekney and Mehl became interested 

in this problem through a background in plasma physios. 

Ipiral strueture is a pussle of long standing in 

astronomy. Spirals eennet be a transitory evolutionary 

phase; the statistics ef relative numbers of spirals 

among all galaxies (about 2/3 spirals) are net consistent 

with sueh a notion. The basic problem is how te keep the 

spirals from wrapping themselves up. They are known te 

rotate (from speetreseopic evldenoe), and do net rotate 

rigidly. The typical field of differential rotations 

has  larger angular velocities (aver* linear velocities) 

in the inner portions than there are farther out. Any 

pattern impressed en such a differentially-rotating form 
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would wrap up arid become indistinguishable after a few 

rotations. And the rotation tunes (around 1/4 billion 

years for our Galaxy) would wash out any spiral patterns 

in times far too short to be consistent with large fraction 

of spiral galaxies actually observed. 

The way out of this difficulty vas given by B. Lindblad, 

who started working on this problem around 1925. The 

"wrapping-up" occurs if the spiral consists of identifiable 

material - what, today, we call a "material arm."  Lindblad 

pictured the spiral as a pattern—a density wave. 

C.c. Lin and his group have built this idea into a pleasing 

theory that has caused cuite a bit of excitement among 

astronomers. 

Even with the help of these models, the problem of 

spiral structure cannot be regarded as solved —many features 

are not yet understood. Neither theory nor observation 

can give an unambiguous answer to so simple a question as 

whether the spiral patterns lead or trail. The lifetime 

and stability of the spiral patterns are open questions. 

There are other difficulties as well, but they merely 

reinforce the need for alternate approaches to the problem. 

One of the nice things about working in astronomy is 

that many of the obje "-.s are incredibly beautiful. A spiral 

galaxy is one of the most pleasing objects.  In Figure 1, a 

well-known spiral galaxy, M 51, is shown.  Ignore the bright 

knot at the end of one of the arms. The features that impress 

you immediately in this photograph are (1) a general rather 

good twofold symmetry that extends over the entire galaxy, 
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Fig. 1.   A spiral galaxy seen face-on. This is known to 
astronomers as MS1, or NGC 5194. 

in spite of many detailed irregularities, (2) a reasonable 

amount of contrast, or of brightness difference, between 

the spiral arms and the inter-arm regions, (3) generally de- 

creasing brightness farther from the center, with a fairly 

bright center (the photograph does not show this nearly as 

well as it should—no photograph can), (4) disappearance of 

the spiral pattern at the center, but the spiral continues 

outward as far as you can distinguish the galaxy, (5) some 

dark lanes on the inner edges of the spiral arms (trailing 
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edgea, if the erma trail), (6) it loeka like a flat 

object lean face-en in this photograph—it ia a little 

difficult to imagine a threo-dimehaionai atrueture that 

would look aomethinf like thia in any direction, (7) it 

ia clearly a aalf^gravitating eyatem, (I) while there 

nay be neighbora, their influence ia email. The ex« 

perta will aee a let more in thia picture. The bricht 

apeta outaide the galaxy linage a» foreground atara. 

figure 1 waa made with an ordinary (i.e., blue" 

aenaitive) photographic plate« If a red-aenaitive pla+.d 

ia uaed behind a filter to rossove moat of the blue light» 

the galexy ahowa much leaa atrujture. If the galaxy ia 

photographed through a filter that paaeea Ha or H-, then 

a aet of bright "knota" ia aeen along the apiral arma-- 

prineipally near the dark ianea. The interpretation of thia 

ia that moat ot the light in the apiral arma cornea from 

very bright» young, blue atara (o and U atara)» and from 

ioniaed hydrogen (HII) rsglona aurrounding auch atara. 

These atara» which nay be aa much as 1000 to 10000 tines 

aa bright aa the aun, but only 10-30 timae as jMaaive, 

do not live very long—they eenaum« the available fuel 

atorea much too rapidly. The red background nay oone from 

atara that are leaa maaeivei hence longer-lived. Moat of 

the maaa ia in the form of atara that produce the red light, 
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most of the light comes from the blue stars. 

Our own Galaxy has all these ingredients as well. 

We see bright blue stars, many faint red stars, and 

gas clouds. There are some bright red stars too, but 

these are much less massive than the bright blue stars, 

and are at an advanced stage of their aging process. 

Usually, the bright blue stars are near or inside gas 

clouds, the gas very near the star often being ionized. 

The gas density is very irregular. The bright blue 

stars must have been born recently—presumably out of 

the concentrations of gas. Moving with typical veloci- 

ties, they cannot depart from their parental gas cloud 

very far during their lifetime. Of course, stars of all 

masses will be formed from these gas clouds- -many more 

low-mass stars than high-mass stars, but almost all the 

light comes from the bright blue (massive) stars. It is, 

of course, no accident that we think that extragalactic 

nebulae are built of the same ingredients that we see in 

the solar neighborhood of our own Galaxy—it is precisely 

because we see them here that we think they must be the 

principal constituents of other galaxies. We also see in 

our own Galaxy dark regions, or "dust clouds," usually 

associated with gas clouds and bright blue stars, that we 

think are similar to the dark lanes in these other galaxies. 
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NGC 1300, in Figure 2, shows another common form of 

spiral galaxy. This is known as a "barred spiral, " and 

shows the same features as have been pointed out in M51, 

although perhaps different in detail. The barred spirals 

usually have the pair of dark lanes symmetrically disposed 

near the ends of the bar. The bar tends to be redder than 

the arms, M81, in Figure 3, is a particularly beautiful 

object, showing again the same kinds of features.  Here 

the spiral pattern is more tightly wound. M81 gives the 

distinct impression of a flat object seen in some direc- 

tion other than face-on. Finally, NGC 891, in Figure 4, 

shows the extreme case of one of these objects seen edge-on. 

Presumably, if you could see it from another direction, 

NGC might look like M81 or M51 (without the satellite). 

Notice the dark lane concentrated rather closely to the 

median plane. All these pictures are shown in an attempt 

to convince you that a reasonable model for these objects 

is a self-gravitating mixture of various constituents, all 

constrained to move in a plane. 

There are other kinds of galaxies—principally the 

very regular and beautiful ellipticals, which look like 

(oblate) ellipsoidal mass distributions, and do not show 

the dark lanes or gaseous regions—and the irregulars, 

which show a little bit of everything, with much less 

organization. 
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Fig.   2. A different kind of spiral galaxy—a barred 
spiral.    This is NGC 1300,  also seen face-on. 
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Fig. 3.   Another spiral galaxy (M 81 - NGC 3031). This 

gives the impression of a flat object seen from some 
angle other than foce-on. 
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Fig. 4.   A spiral galaxy seen edge-on (NGC 891). Presumably 

M 51 or M 81 would look like this if viewed from the appro- 

priate direction, and NGC 891 might look like one of them if 
viewed from another direction. 
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As plasma physicists, you will notice that nothing 

has been said about magnetic fields. A few years ago, 

most attempts to explain spiral structure centered on 

magnetic fields. There is good evidence that magnetic 

fields are one of the ingredients of our galaxy. The 

main justification for omitting them from the present 

discussion is that the influence of the magnetic fields 

on the dynamics of the stars is through the gravitational 

effect of the ionized gas—which represents a small frac- 

tion of the total mass. Failure to construct a convincing 

spiral model without magnetic fields would force us to 

include them; but it is worth a try without magnetic fields 

because a model without them will be much simpler. 

The starting point for most current theories of spiral 

structure is abstracted from the conditions just described. 

Models are to be constructed of self-gravitating systems 

restricted to a plane.  In that plane, there is a pre- 

dominantly axisymmetric mass distribution that generates 

axisymmetric potential and force fields. The axisymmetric 

part consists of red stars and contains most of the mass. 

Superimposed on this background is a gaseous system—also 

self-gravitating, but obeying gas-dynamical equations 

rather than the particle equations of the stellar dynamical 

system.  The two subsystems interact to generate a self- 

consistent whole.  Both subsystems partake of the differential 

rotation. The gaseous subsystem contains a spiral pattern 

which rotates (almost) rigidly with its own angular velocity. 

The material (both stars and gas) flows through the pattern. 
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There is a slight potential minimum at the pattern (the total 

potential field is no longer axisymmetric), where the gas 

tends to concentrate. The gas concentration also induces a 

slight concentration of stars in the neighborhood of the 

spiral pattern, but that concentration is much weaker. 

A shock may form as the gas flow enters the potential minimum 

at the spiral pattern. New stars are thought to form in re- 

gions of high density—thus preferentially near the shock. 

When old stars die, they return some gas to the medium, to 

allow this process to continue. However, not all gas is 

returned, so the process cannot go on forever. The angular 

velocity of the pattern is lower than the angular velocity 

of the gas and stars over most of the region in which the 

pattern can be seen. Lin's models are built by impressing 

a spiral pattern on this kind of background, then solving 

the self-consistency problem for the combination of gas and 

stars in the (linearized) limit of small density variations 

and of small pitch angles for the spiral patterns. 

Computer models, on the other hand, may start from 

nearly axisymmetric models and allow a process like star 

formation to go on. The stars move under theusual stellar 

dynamical equations, with the forces determined by self- 

gravitation. The "gas" population follows a modified 

dynamics according to which turbulent energy is artificially 

removed.  So far, the "gas" has not obeyed gas-dynamical 

equations, but only a crude approximation to them. A shock 

could not form in these models. We are improving this 

feature of the calculation.  Hohl's models differ in impos- 
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ing an axisymmetric potential in which the stars move so 

only one population is ^eded. The computer models normally 

handle about 10 partial« -.—they could be pushed to 10 or 

10 on current machines if there were any clear-cut reason 

for doing so. Even so, they fall far short of the 10  in 

a real galaxy. Thus the theoretical models (Lin, and others) 

and the computer models are complementary approximations to 

real stellar systems. The theoretical models ignore the 

grainy structure of r3al stellar systems, while the com- 

puter models are far too grainy. 

Details of the calculations have been published, and 

will not be discussed here. Our calculation has been adver- 

tised to be reversible and to have an exact Liouville theorem 

in the iLC-space, all obtained at the cost of treating the 

integrations somewhat crudely.  Reversibility is as much a 

matter of numerical accuracy and roundoff as it is of the 

difference-scheme used. We have taken some pains in these 

matters, but cannot give an honest appraisal as to how 

important these features are. 

The results of a calculation that yielded spiral 

patterns are shown in a motion picture. A few frames froti 

the motion picture are reproduced here as Figures 5 and 6. 

The "star" field shown in the upper right-hand corner of 

Figure 5 changes very little as the calculation proceeds. 

The remainder of Figures 5 and 6 show the "gas," at succes- 

sive integration steps at a stags of the calculation in 

which the spiral pattern had settled down fairly well. The 

pattern rotates in about 30 integration steps, while Fig- 

ures 5 and 6 show 11. 
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Fig. 5. Frames from the motion picture of the computer spirals. 
The upper-right-hand frame shows the "stars," which change little 
during the calculation; the rest show the "gas" at various integra- 
tion steps. 
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Fig.  6.        Continuation of Fig.  5. 
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This calculation started from a circular disk that 

was all "gas," but had a rule for creating "stars" out of 

the "gas" that is thought to conform to what might go on 

in a real galaxy. The precise rule must have profound 

dynamical consequences—certainly altering the rule alters 

our models - but this particular aspect of the calculation 

should not be taken too literally.  By the time shown in 

Figures 5 and 6, about 85% of the mass was in the form of 

"stars," the remaining 15% still being "gas." Star forma- 

tion had stopped long before the time of these figures. 

However, once stars were formed, they remained stars for 

the rest of the calculation—there was none of the re- 

cycling of material that is expected in a real stellar 

system. 

The spiral density wave idea is shown in Figures 7 

and 8. These figures represent the "gas" portion of the 

system, with a few "particles" singled out and plotted 

as large squares.  The identity of certain "particles" is 

retained from frame to frame.  In figures 7 and 8, indi- 

vidual "^articles" can be seen to approach the spiral 

feature from behind (the rotation is clockwise), dwell at 

the feature momentarily, then to pass on through it. We 

have not been able to show this effect in a sequence of 

still pictures nearly as dramatically as .he motion picture 

shows it, but the effect is there. 

A word of warning. These sequences—and the motion 

picture—should not be considered as depicting the f.3ing 

or evolution of a real galaxy.  The initial conditions are 
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LLl^ife ill 
Fig. 7. Detail« of the spiral pattern«, showing individual 
particle« moving through the spiral features. The entire 
system is shown in the top frame, the lower frames are 
enlargements out of that picture at intervals of 1/5 an inte- 
gration step. Certain particles are plotted as large squares 
in each of the frames, to show the motion of those particles 
relative to the pattern. 
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Fig.   8. Continuation of Fig.   7. 
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certainly unrealistic, and the real system has a more com- 

plex interplay of various properties than we have been able 

to include in the computer program. Thus the fact that one 

or more of these frames might look like photographs of some 

real galaxy does not mean that we have managed to reproduce 

the evolutionary history of that particular galaxy, or even 

that earlier and later stages of the calculation indicate 

what that galaxy would look like at earlier or later stages 

of its aging process. The value of the numerical experiments 

lies in general indications of how difficult it is to build 

spiral patterns that live for a while (these lived for about 

3-4 pattern rotations), of the interplay between the 

"star" and "gas" populations in the pattern, what 

fraction of the mass of the system participates in the 

pattern, and so on.  It is particularly valuable to be 

able to "kick" the computer experiment to see if it 

•bounces,"—something that we cannot do with the real 

galaxy.  The computer experiment is an experimental tool 

with which we can try to find out what makes spiral 

patterns. While the emphasis in this paper is on spiral 

patterns, there are other experiments that both Hohl and 

we have done with these systems.  These include experi- 

ments on gravitational stability and attempts to verify 

various stability predictions. 

So what have we learned from these computer experi- 

ments? We have learned that spiral patterns can be constructed 

of self-gravitating systems without need to invoke magnetic 

forces.  But two populations were needed, or some other 

artifice to emphasize the spiral pattern.  Real galaxies 
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have a very effective amplifier of small density variations 

to produce large brightness variations. Computer models 

need the same thing. On detailed analysis, we find that 

there is a spiral density wave in the stars as well as in 

the gas— there is about as much total mass participating 

in the spiral phenomenon in the stars as there is in the 

gas. But about 1/4 the gas participates and less than 5% 

of the stars, so when we plot the star density we do not 

see a spiral pattern.  So far, there are no spiral patterns 

in computer models without two populations (think of Hohl's 

background potential as the second population), just as we 

know of no spiral systems in the sky that do not have two 

populations. But are two populations necessary? He do not 

know.  Spiral patterns seem to appear when the conditions 

:e about right, but we find that spiral patterns are diffi- 

cult to stir up if the conditions are not just right (this 

is the content of Quirk's Ph.D. Thesis). 

As with all experiments, the computer experimenter must 

be very careful to avoid interpreting situations in which 

the experimental results fail to contradict his prior preju- 

dices as proof of the correctness of those prejudices. With 

these experiments, we have seen some patterns. What we see 

fails to contradict our prejudices. We feel that we have a 

foot in the door, ard a valuable tool for experimenting with 

properties of spiral systems.  The real test comes now—to see 

if we know how to use that tool for some definitive experi- 

ments. 
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For those who may wish to pursue some of these matters 

further, the following references are starting-points and 

lead to earlier literature: 

(1)  Theoretical work on spiral waves, especially the 

Lin school: 

C. C. Lin, C. Yuan, and F, H, Shu, 

Astrophys. Journ. 155, 721 (1969) 

(2) Hohl's computer experiments: 

F. Hohl, "Dynamical Evolution of Disk Galaxies", 

NASA Technical Report NASA TR R-343, July 1970. 

F. Hohl and R. Hockney, Journ. Computational Physics, 

4, 306 (1969). 

(3) Our group: 

R. H. Killer, K. H. Prendergast, and W. J. Quirk, 

Astrophys. Journ. 161, 903 (1970). 

(4) General review of astronomical view of spirals 

(conference proceedings) 

The Spiral Structure of Our Galaxy, IAU Symposium 38 

W. decker and G. Contopoulos, Editors 

(Dordrecht, Holland: D. Reidel Publishing Co.) 1970. 
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Chemistry from Computers: 
A New Instrument for the Experimentalist 

Arnold C. Wahl 
A rgönne National Laboratories 

Argonne, Illinois 

INTRODUCTION 

Some time ago, being fresh from the enthusiasm of 

computing Hartree-Fock (best molecular orbital) wave 

functions for non-trivial molecules, I gave a talk 

entitled "Hartree-Fock is Here: What Next?" and I received, 

from an experimentalist, a reprint request for the article 

"Hartree-Fock is Here - Who Cares?"  This mis-stating of the 

title of my optimistic talk, in addition to being humorous, 

contained a very substantial bit of truth; namely, computers 

have brought us a great deal - vast numerical tables of 

molecular properties, pretty pictures, detailed wave functions 

from many small molecules (in many cases, so precise, they 

are unusable), and perhaps more "theoretical chemists" that, 

ever before.  But how much chemistry have they really given 

to us?  This question certainly needs to be answered, and if 

we are to make chemists happy we must agree to answer it on 

their terms.  Thus, we need a precision in potential energy 

surfaces of about 1/10 of an eV, we need better than 5X 

precision in ionization potentials, binding energies, vibrational 
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frequencies, tern values, and spectroscopic constants.  We, 

further, must go beyond isolated calculations, and into 

their comprehensive coupling with the traditional tools of 

the chemist to allow us to obtain macroscopic properties. 

In this paper I would like to explore how close we, at 

Argonne, are to achieving such results from computers.  It will 

become apparent that we must be cautious, but that in certain 

cases we are able to obtain truly reliable chemical information 

from our a priori computing systems and that our research is 

most properly viewed as the development of a new instrument for 

the chemist by which he can obtain detailed answers often not 

accessible experimentally.  An intriguing and very important 

aspect of this new apparatus is that it permits us to "look" in 

unprecedented detail with arbitrary magnification or time scale 

(when quantum mechanically legal) at a chemical process under 

study, be it molecular electronic excitation, vibration, 

collision, or the entire path of a chemical reaction (See note 

on page 302 and Figures following). 

THE MOLECULAR ORBITAL MODEL 

As a first step in tracing th<> development of our new ab 

initio instrument for exploring molecular structures, let us 

look at a very popular model of electronic structure; namely, 

2 
the Hartree-Fock molecular orbital model.   This model 

currently is being applied widely in the name of chemistry 

to all kinds of systems.  However, some typical results 

obtained by the Hartree-Fock model show that although it is 

adequate for some molecular properties, the Hartree-Fock 

model has very well-known and well-substantiated deficiencies 
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which make it difficult to really do a priori chemistry from 

Hartree-Fock calculations. 

First of all, let us briefly review what the Hartree-Fock 

2-30 
model     is.  The Hartree-Fock model is the best orbital model. 

20 In the Hartree-Fock model   we place electrons in individual 

three-dimensional functions ♦ ., include spin functions, and then 

form a properly antisymmetrized product of these spin orbitals. 

©VJ (1) 

to obtain the total atomic or molecular wave function. 

Mathematically, the orbitals  1  are solutions of integro- 

differential equations of the form 

FA  » e * 
i   ei*i 

28 

where F is an operator depending upon all electrons and nuclei 

of the systems and arising from the variations of its total 

electronic energy.  These equations must be solved iteratively' 

since the orbitals *.  determine the operator F and vice-versa. 

Convergence on the "best" set of orbitals is achieved when rhe 

*.s from two successive iterations agree within some permissible 

numerical threshold.  In Figures 1 through 3 some typical 

pictures of best molecular orbital and total electron densities 

for a variety of diatomic molecules are shown.  From these 

pictures It immediately becomes apparent that the Hartree-Fock 

model forms a very appealing, conceptual and, in fact, symbolically 

beautiful framework for thinking about molecules. 
30,31 
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Fig, la. Orbital model of iiomonuclear diatomic molecules. 
ANL-7076 by A. C. Wahl (1965), also Science 151, 961 
(1966), and for a discussion of alkali halide densities see 
A. C. Wahl, F. Janis2ewski, and M. T. Wahl (to be submitted 
to Science). All diagrams are produced automatically by 
digital computers linked to a cathode ray tube. Conventions 
given in key to this figure. 
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The homopolar cases (Figure 1) have symmetry and covalency; 

in the ionic systems (Figt e 2) the molecular orbltals are 

really localized on the individual ions and are very much like 

the isolated ionic orbltals.  In looking at "pictures" of mole- 

32 33 32 33 
cular processes -- namely, ionization  '   and excitation  ' 

(Figure 3) — it appears that in the orbital framework we get a 

qualitative feeling for what's happening.  An orbital shrinks 

when we remove an electron, it gets a little smaller, a little 

tighter, because there is less electron repulsion.  Further, the 

non-active orbital? are relatively insensitive to the ionization 

process (Figure 3a).  In Figure 3b we "see" quite dramatically 

33 a o to IT excitation   in the hydrogen molecule followed by 

ionization. 

Now let's turn to some typical quantitative results 

obtained from the model.  In Tables 1 and 2 recent results 

of Hartree-Fock calculations on diatomic systems      are 

shown.  We are first struck by the rather good geometry pre- 

dictions -- we can predict internuclear distances, often 

within less than 1%.  Also, a typical one-electron property 

such as the dipole moment is well predicted.  But, looking 

further at the tables, we find, from a chemist's viewpoint, 

binding energies are terrible.  We can, of course, correct 

them semi-empirlcally, but this, after all, cannot be called 

a priori chemistry from computers.  We see that the dissocia- 

tion energies are often off by 1002; take F., as an outstanding 

example of this deficiency.  Also, vibrational frequencies 

really don't allow us to distinguish between excited states of 

the same molecule; the precision is not sufficient.  We find, 

for instance, in the excited states of the nitrogen molecule 
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MOLECULAR ORBITAL DENSITIES* 
THE ALKALI HALIDES 

CATION PARENTAGE 
Is    2s   2piT 2pc 3s   3pTT 3po* 

♦These molecular orbitals are arranged according to their separated ion parentage 
, . .first the set arising from the cation and then the set from the anion.    The 
molecular orbital libel is given above each diagram. 
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AN ION PARENTAGE 
Is     2s   2ptr 2pc 3s   3piT 3pa 
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HHHH 

Fig. 2a. Orbital model of some alkali halides. 
Conventions are explained in ANL-7076 by A. C. 
Wahl (1965); also Science 151. 961 (1966), and for 
a d.scussion of alkali halide densities see A. C. 
Wahl, F. Janiszewski, and M. T. Wahl (to be sub- 
mitted to Science); Atoms to Molecules (Film 
series) by A. C. Wahl and U. Blukis. McGraw-Hill 
Book Co., New York (1969) and J. Chem. Educ. 45, 
"87 (1968); and Four wall charts of atomic and mo- 
lecular structure by A.C. Wahl and M. T. Wahl, 
McGraw-Hill Book Co., New York. 
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Flg. 3a. In the orbital picture of molecular lunization for the nitrogen molecule orly valence orbital* (uvettrcn 
plotted. Note that it is primarily the orbital from which an electron has been removed which changes. Hor con- 
ventions tee ANL-7076 by A. C. Wahl (196.S). alio Science 151. '.Mil (l'.Htf). and for a discussion ,.f alkali halide 

densities see A. C. Wahl, f. Janiszewslu, and M. T. Wahl (to be submitted to Science), For wavef.UiCUons see 

P. E. Cade. K. S. Sales, and A. C. Wahl. J. Chcm. Phys. 44. 1973 (liifiG). 
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I   "• 

-10 - 

-1.2 

R(Bohrt) 

Ftg. 3b. The diagrams teptetent the two fundamental processes in chemistry: excitation and 
tonization. The diagram representing the excited and ionued states arc contour plots of the 
total electron densities of the three systems. Ho in its ground state; Ho in an excited pi state, 
and H£ in its ground state. In all three diagram» the outermost contour has a value of 6.1 x 
10"* electrons/bohr' and each successive inner contour increases in value by a factor of 2. 
Note the disappearance of the inner contour value of .25 in HQ after it has undergone excitation 
or loniiaiion. These diagrams were drawn automatically by electronic computers and arc based 
on accurate ab initio calculations of the wavefunctions for the H2 system. [A Double Config- 
uration Self-consistent Field Study of the lnu, ^vu, 'IT,, and ^Hp States of H2 by W. Zemke, 
P. Lykos. and A. C. Wahl (to be submitted to J. Chem. Phys., and Ph.D. Thesis by W. Zemke. 
I.I.T.). and BISON: A New Instrument for the Experimentalist by A. C. Wahl. P. I. Bcfloncini, 
K. Kaiser, and R. H. Land, bit. ]. Quantum Che in., Sambel Synip. Issue (UK>'J)J 
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42 ion   (Figure 7) that there is an inversion of molecular energy 

levels, that does not allow us to interpret spectroscopy.  Now, 

the reasons for these defects are well known.  The orbital 

picture has an inherent error built into it, the correlation 

error.  The orbital picture does not allow electrons to get out 

of each other's way explicitly and instantaneously.  It happens 

that this error for the atoms is not the same as the error for 

the molecule built from these atoms.  Therefore, binding 

energies are not good, and further, the error differs for 

different states of the same system.  Thus, term values are 

not accurate. 

Secondly, a simple molecular orbital picture, although 

relatively good at the equilibrium configuration of most 

molecules, deteriorates rapidly as you try to pull the molecule 

apart.  Thus, the shape of the potential curve is distorted by 

the constrained form of the molecular orbital picture.  These 

two defects of the Hartree-Fock model account for its most 

serious shortcomings; namely, improperly shaped energy surfaces, 

bad binding energies, and badly computed term values for 

transitions between electronic states. 

There are notable cases where the Hartree-Fock model does 

provide some chemistry, but certainly not a "chemist's" 

chemistry.  For instance, in Figures 4, 5 and 6 the potential 

47 
curves obtained from Hartree-Fock calculations   on the rare 

gases He, Ne, Ar are plotted.  Here, we are obtaining from our 

calculations a precision just about as high as currently is 

available from experiment.  This is due to the fact that the 
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Ht-He 
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12 3 4 

InttmuclMr distance R (Bohrs) 

Fig. 4. He-He potential curves. AJC—semiempirical curve from 
Mattering data; I. Amdur. }. D. Jordan, and S. O. Colgate, J. Chem. 
Phyj. 34, 1515 (1961). AB--semiempirical curve from icattering data; 
I. Amdur and R. P. Bertrand, J. Chem. Phys. 36, 1078 (1962). BD-- 
semiempirical curve from composite data; R. A. Buckingham and 
D. M. Duparc, Progress in International Research on Thermodynamlc 
and Transport Properties (Symposium on Thermophysical Properties, 
Princeton University, 1962; American Society of Mechanical Engi- 
neers. Academic Press. New York, 1962), p. 378. TFD--Thomas- 
Fermi-Dirac method; A. A. Abtahamson, Phys. Rev. 130, 693 (1963). 
AIB—semiempirical curve from scattering data; I. Amdur, J. E. Jordan, 
and R. R. Beroand. Atomic Collision Processes(Ed. M. R. C. McDowell, 
Proceedings of the Third International Conference on the Physics of 
Electronic 2nd Atomic Collisions, London, 1963; North-Holland. 
Amsterdam, 1964), p. 934. KL—semiempirical curve from scattering 
data; A. B. Kamnev and V. B. Leonas, Soviet Physics--Doklady 10, 
529 (1965). LCAO--linear-ccmbinition-of-atomic-orbitals method; 
T. L. Gilbert and A. C. Wahl. J. Chem. Phys. 47. 3425(1967). OSCF-- 
optimized self -consistent-field (Haraee-Fock) method; loc. cit. 
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IOOII t i i | i i i i | i i i i | i i i i | i i i i. 

Nt-Nt 

InternuclMr diitonoa R (Botin) 

Fig. S. Ne-Ne Potential curvet. MR--semiempirical curve 
from tcattering data; E. A. Maion and W. R. Rice, ]. Chem. 
Phyi. 22, 843 (1954). AM—lemiempirical curve from leaner- 
ing data; I. Am Air and E. A. Mason, J. Chem. Phys. 23, 415 
(1955). TFD--Thomai-Fermi-Dirac method; A. A. Abrahamson, 
Phyi. Rev. 130, 693 (1963). KL-temiempirical curve "rom 
scattering «Uta; A. B. Kamnev and V. B. Leonas, Soviet Ph/s.-- 
Doklady 10, 529 (1965). LCAO--linear-combination-of-atomic- 
orbital method: T. L. Gilbert and A. C. Wahl. J. Chem. Phys. 47, 
3425 (1967). AASCF--augmented asymptotic self-consistent- 
field method: loc. cit. 
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100 

IntamuclMr dittanc« R (Bohrt! 

Fig. 6. At-At potential curves. LCAO--linear-combination- 
of-atomic-orbital! method; T. L. Gilbert anil A. C. Wahl, 
J. Chcm. Phyj. 47, 3425(1967). AASCF--augmented asymp- 
totic self-consistent-field method; Joe. cit. TFD--Thomas- 
Fermi-Dirac method; A. A. Abrahamson, Phys. Rev. 130. 693 
(1963). BF--semiempirical curve from composite data; I. A. 
Barker and A. Pompe, tobe (..iblished. AJP--semiempiric*l 
curve froi'i scattering data; I. Aindur, J. E. Jordan, and R. R. 
Bertrand, Atomic Collision Processes (Ed. M. R. C. McDowell, 
Proceedings of the Ti ird International Conference on the 
Physics of Electronic and Atomic Collisions, London, 1963-, 
North-Holland. Amsterdam, 1964), p. 934. AJj and AJ2" 
setniempincal curves from scattering data. I. Amdur and 
J. E. Jordan, quoted in D. D. Konowalow and S. Carra, 
"Morse Potential Functions for Nonpolar Gases," Report 
WIS-TC1-74 from the Theoretical Chemistry Institute of The 
University of Wisconsin, Pec. 1964. KL--»emiempirlcal 
curve from scattering data; A. 9. Kansnev and V. B. Lconas, 
Soviet Phys.--Doklady 10. 529 (1965). AM--sem<empirical 
curve from scattering data; I. Amdur and E. A. Mason, 
J. Chem. Phys. 22. 670 (1954). 
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correlation error fo- these closed-shell systems remains rela- 

tively constant as the atoms are forced together.  There are no 

new electron pairs formed snd, thus, no new strong electron 

correlations associated with molecular formation. 

48 49 64 
jne-electron bond are typified by He.+ ,  '   Li-He, NaHe, 

,56 

BEYOND THE MOLECULAR ORBITAL MODEL65'*36 

The Hartree-Fock model is good for predicting geometry and 

many one-electron properties (this is also true for similar 

calculations on polyatomic systems).  The Hartree-Fock model 

also yields adequate results for a variety of molecular systems; 

namely, those arising from closed-shell interactions, for 

47 instance the noble gases.    Systems in which there is only a 

or 

NeH+, HeH+JU (some rather bizarre systems from the chemist's 

viewpoint), and highly ionic systems for which the shape of 

the potential curve is rather good are typified by the alka t 

halides  '   which are, in fact, analogous to the rare gas 

systems held together by a coulomb force. 

How can we Improve this model without losing its valuable 

features?  C would like to describe what we have been doing to go 

beyoru the Hartree-Fock model with the goal in mind of obtaining 

results on diatomic and, eventually, larger systems.  A con- 

dition is that these results be of genuine luantitatlve use to 

the experimental chemist and serve to complement his efforts, 

particularly where the experiment is difficult to perform.  Such 

situations might involve high temperatures, highly corrosive 

materials or very short-lived transients.  The essence of our 

6,103-106 scheme, which   I   am  now   going   to   describe,   involves 

•76 
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_* i i. 
t» If »« M 

Fig. 7. At the left ate shown theoretical potentiah foi the nitrogen molecule and in ions; at the right, 
experimental curves. Note the inversion of the 2Eg and 2n„ state—a defe^i of the orbital picture. See 
P. E. Cade. K. S. Sal«, and A. C. Wahl. I. Chem. Phys. 44. 1973(1966). See Fig. 3a for the changes 
taking place in the orbital picture of these ioniiadons. 
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a direct pursuit of the two major defects of the Hartree- 

Fock model.  (1)  The molecule is allowed to dissociate 

properly (in many cases, this is a tiivial extension of the 

Uartree-Fock picture), and (2) the correlation error in the 

molecule is m*»de the «ame as the correlation error in the 

atoms.  The latter is more difficult to achieve - especially 

in the general case.  However, for systems in which the 

chemical bond is isolated by being one quantum number higher 

than the rest of the molecular core, the correlation energy 

changes associated with molecular formation are isolated by 

being placed in this bonding region and we can do a rather good 

job of making the correlation error constant, as a function 

of inter-nuclear dlsrance. 

We see some typical results for the systems H , Li., and 

NaT in Figures 8, 9, and 10.  We see in Figures 8b and 9b the 

orbitals necessary, in addition to the Hartree-Fock model, for 

the bonding electrons to avoid each other as the molecule forms, 

and to give us a correct continuous picture of chemical bonding 

(Figures 8c and 9c).  These correlation terms may be conven- 

iently categorized as in-out, left-right, and angular.  When 

added or subtracted to the ground state molecular orbital they 

move the electrons away from each other in an in-out, left-right, 

or angular sense.  For systems such as H  in which there is a 

single bond - no other electrons, and Li  in which the bond is 

quantum level two and the core in quantum Itvel one, the 

quantitative results are truly gratifying and, in fact, are of 

sufficient quality to be useful to the experimentalist.  Fcr 

F., we have obtained significantly better results than those 

obtainable from the Hartree-Fock s\odel, but still have not 
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Fig. a» 

CorapuiM.il of Hunee-Fock. HF; optimal double 
rmflgiifTt4"ii. ODC; and optimal valence config- 
uration. OVC; potential cunt« with experimental 
cue foe H2. (G. Das and A. C. Wahl. J. Chem. 
Phyi. 44. 87 (1966).] 
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HYDROGEN MOLECULE FORMATION CONTOURS 
FOR  EHF WAVE FUNCTIONS 
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FORMATION 

EXTENDS)    M4PTREF-P0CK   «ft*    FUNCTONS      r^ 

B       BO*S 

Fig. 6c Total chu^'-oemity < ontiua of the Hj OWC vavefunctioo m the molecule {arm».  (G. DM and A. C. Wahl, 
I. Cham. Phya. 44, 87 (1966) and mid.. 47. 2934 (1967).] The horizontal line to the level of the Hj experimental energy. 
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Comparison of Hamee-Fock and optimal valence 
configuration potential curvet with eaperimenul 
one for U2. (G. DM and A. C. Wahl. 1. Chera. 
Phy». 44. 67(1986).] 
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EXTENDED   HnflTflEE RXK   WAVE    PJNCTONS  L? 

& 

10 

o 13 

H   a>*s 

Flg. 9c. Total dinge denity contour* of the Uj OWC wavefunction a the molecule form«. The horiaonul 
line la the level of the Uj experimental binding energy. [G. DM and A. C. Wahl. J. Cbem. Pop. 44. 87 
(1966) and ibid.. 47, «934 (1967) J 

to    »o    >PO    no   *o   »0 
■«TfMIUCl.C4* OlSTMntf liOH«Il 

Pig. 10. Comparison of Hannse-Focti and optimised 
valence configuration potential curvet fat NaF. 
[A. C. Wahl. P. ). Bcnonctru. G. Dai. and T. L. 
Gilbert. Intern. I. Quantum Chem., Symp. Wo. 1. 
123(1967).] 
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don* wall enough to really aid the experimentalist (Table 3 

and Figure 11).  The reason for th<s is that F„ conventionally 

Is considered to be a single-bonded molecule.  However, the two 

electrons forming the bond are in the same radial quantum shell 

and, thus, occupy the same physical space as twelve other 

electrons.  Therefore, there are subtle intershell correlation 

effects, which must be taken into account. 

Let me now review the essential ideas of the Optimized Valence 

Configuration (OVC) method, and then describe its recent applica- 

tion to an experimentally uncharacterlzed system. 

Configurations were added to the Hartree-Fock picture to 

allow proper dissociation of the molecule.  (In h. this is merely 

one extra configuration which subtracts the ionic terms as the 

atoms separate.  Inclusion of such a configuration allows us to 

"look" continuously at molecular formation.  We could not do 

this with the simple model of the molecular orbitals.)  Addi- 

tional configurations allowed the bonding electrons to avoid each 

other as the molecule formed; since they were of course, 

avoiding each other completely when the constituent atoms were 

at Infinite distance.  Included were angular and ln-out terms 

in addition to the left-right term which brought about proper 

dissociation. 

The optimized valence configuration wave function thus has 

the form 

* - A ♦  + I. A. «, 
* oo   k k k 

where the ♦ , are antlsymmetrlzed products of orbitals t     similar 

to equation (1).  However, the ♦, are now in the general solution 
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Table 3 

•.(««-*)       «.(MM) X>.(«V) 

H, 

owe (V, only)' 
owe (AM ► »*.)• 

4361 I JO 3J64 
4214 1.42 4.13 
439a 1.40 4JS 
4400 1.40 4.73 

320 5J6 0.17 
344 3.43 0.46 
343 5.09 0J3 
343 5.09 0.99 
331 5JS 

NaLi 
1.03 

204 3J6 0J9 
236 5.40 0J3 

r. 
1237 2 JO -1J7 
070 2.74 0J4 
704 2.72 001 

N.C. 2.70 OJ» 
092 2 JO 

tut 
I JO 

370 343 3J» 
370 3J6 170 
336 SJ4 4J4 

»». 

IJiJ. 

'Sn 
'Sac 

lb. 
»tj. (6) 
?*J. {*) 

H00.T 

t 
i 
5  -ISM 

i 
III 
a 

COMPUTED POTENTIAL 
CURVES FOR THE 
FLUORINE MOLECUiE 

HARTREE FÖCK LIMP 
2 F ATOMS-« 

pVC (3*9 ONLY OlSTURKOl 

-OVCI J»„l FILLED FROM i> • ? 

t EXFT 

t.O      SO      4.0      ».0      4.0 
INTERNUCLEAR (..STANCE (tOHRSI 

Fig. 11. Comparison of Haitree-Fock ODC And OVC 
potential curvet for F2.  [G. DU and A. C. Wahl. 
I. Chem. Phyi. 44. 87 (1964).] 
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of   individual   integro   differential   equations   of   the   form        ' ' 
105,106-121 

Vi "   ei*i 

where the F. are more complicated operators depending upon all 

orbitals of the system and all mixing coefficients A. .  Con- 

vergence to be~.t orbitals is achieved in this model when the 

energy of the system is stationary with respect to variation of 

both the coefficients A, end the orbitals *_,.  We have seen some 
k i 

of these necessary additional orbitals in Figures 8c and 9c. 

Thus, we evaluate only the increase in correlation energy 

associated with molecular formation, and we, in addition, 

allow ;he core to distort and polarize, but we do not try to 

correlate the core.  We assume that the correlation error in 

the core is constant.  This assumption is supported by calcula- 

tions on the rare gas systems, (Figures 4-6) and also by our 

calculations on Li. (Table 3).  We now feel that we understand 

this model very well and, as we have stated earlier, for the 

type of bond which is isolated we can do a very good job in 

obtaining the proper molecular energy surface.  For an ionic 

bond, the ionic system was handled quite well with the Hartree-Fock 

approximation and we needed only one additional configuration to 

allow for proper dissociation.  Because of intershell effects, we 

still are not able to calculate bindiiie energy.  However, tech- 

niques now being developed are expected to provide the necessary 

Improvement.  (See NaF results in Table 3 and Figure 10.) 

For F., we see that our results are not yet satisfactory; 

(Tr.ble 3, Figure 11) again, because of ..t.tershell effects.  The 

correlations between po and pir electrons and between s and p 
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electrona are not taken into account in our method (at thle 

writing). 

However, bolatered by our confidence that we can do very 

well on the alkali-type ayatema, we decided to try to do a 

predictive calculation concerning a ayatem of which little ia 

known experimentally.  Applying our method, we obtained the 

138 - 
reaulta   for Na-Ll praaented in Table 3 end Figurea 12 and 

13.  A binding energy of about .85 eV (quite aubatantial) and 

the calculated v.brational frequency, etc. are predicted.  We 

feel we can attach a precialon to theae reaulta of a few percent 

and we are hoping that theae reaulta will b* uaed by the experi- 

eentaliat in the near future to guide him in further characterising 

thia ayatem. 

A NEW "INSTRUMENT" FOR CHEMISTS 

The next queation la, alnce we new have aome ab inltlo reaulta 

on the energy aurface of the almple but experimentally uncharacterlted 

ayatem, NaLl, what can be done with auch reaulta to enhance their 

chemical utility?  Aa one example of auch an application we can 

turn to thermodynamica.  We know that we could deecrlba a vapor 

mixture of Na and Li tharmodynamically if we could obtain lta 

13° 
equation of atate 

We muat therefore evaluate the vlrlal cocfflclenta.  In the 

caae of NaLl we are fortunate becauae, aa Indicated by calculated 

equilibrium conetanta for a NaLl mixture (Tablea 4 and 3), at the 

temperaturee and preaaure of intereat, we may aaaume that the 

ayatem conalata overwhelmingly of laolated atoma.  Therefore, we 

mey calculate only the aecond vlrial coefficient, aaaumlng the 
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4.0    S.0    *.0     7.0    S.0    t.0    10.0    11.0    11.0   IS.0   14.0   18.0 
n (BÖHMS) 

Fig. 13*. Calculated potential curvet fot N»U. [A Thwotetical Study of the Nal Syitem by 
P. Bertonclni, G. DM. and A. C. Wahl. ANI-T447 (1969); alto •ubmlttcd to J. Chem. Phyi.] 

FORMATION 

11.0 

Fig. 12b. OVC *I and Haraee-Fock tout charge demlty contouii for the 1£* state of NaU at 
15 boba, 6.6 boh», 5.0 bot».  Picture at 16 boha it 2/3 the scale of other 2 picture«.  (Ibid.) 
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CHEMICAL BOND 

R (Bote) 5.00 
Uigac Contaat Vilue Planed - 0.1 Electroo/Bote 
Conto« Ratio ■ 0.S 

5 50 

R (Bote) 5.00 
Uigett Contour Value Plotted ■ 0.1 Election/Bohr3 

Contour Ratio • 0.5 

5.50 

Fig. 13 Contours of charge density difference associated with the formation of the chemical 
"  -»——• •*•» —.atnn wh*r#> rharoe has increased 

bond in the h staie of NaU Upper diagram shows the region where charge has increased 
relative to dissociated atoms. Lower diagram shows where charge density has decreased 
relative to dissociated atoms. [A Theoretical Study of the Nal System by P. Benonclni, 
G. Das, and A. C. Wahl. ANL-7447 (1969); also submitted to J. Chem. Phys.] 
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Tabt>4 

*r M! «••»u' 

0( UV) 

LOTS 
(tarns.) 

110.1 
Oarnf.) 

0.71 
(UPMS.) 

l.tTl 
(I.MM 
»1.4 

(Mt.l) 
1.01 

(0.00) 

Nat Avail. 
<!.♦»•> 

NMAnU. 
(»40.0) 

NMAnU. 
<0.0») 

Uppar HmMi ia «q wrtaMMal «a*. 

Table 5 

TPK) *£•• glUU 
S". 

111) 1.0*011 1.274*0 0.1104 
1000 2.1)070 0.4104 0.0010 
<*T1 1.417*0 o.ioo; 0.01*1 
•-J 5.»JO»* 10"' 0.0070 0.0110 
77J 1.4*221'10-' 0.0*02 0.90)0 
»71 2.M11* I0'1 0.002» 0.0002 
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concentrations to be the initial concentrations of the atoms. 

The second virial coefficient B(T) in the virial equation of 

state «ay be obtained for a Na-Li mixture from the relation 

B(T) - BNa2(T)X2a + BLl2 (DXJ,  + BNaL1(T)XL1XNa 

where X. represents the mole fraction of component i. 

In order to calculate the three B   (T) we of course 
AD 

needed the AB interaction potential V._ for both the I   ground 
Ao 

3 
state and  £ excited repulsive Jtate arising from the three 

types of collision of atoms in their ground state: NaLi, Li-Li, 

Na-Na.  It is here that the ab initio calculation plays an 

important role.  The I   potentials are available experiment ally 

for Li. or Na. and we used our calculated one for NaLi.  A 

3 
variety of ways for evaluating V   (R) for the I  state are used 

AB 

consisting mostly of semlempirical forms or "scaled" or "reduced" 

140 
potentials; namely, Rydberg, Morse, Anti-Morse, power series. 

We have used our ab initio potentials (in which we have con- 

siderable confidence) and compared them with various popular 

semiemplrical forms. 
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Through   the   relation: 

B  -    iB1     +     f  B3 

and 

»■/"  {»-•«[-W '2  « B  AB  "     2' 

we can obtain from these potentials the three required vlrial 

coefficients. 

Now, what have we done with all of these results?  We have 

predicted the existence of and computed molecular properties 

for NaLi that were not available experimentally; we have gone 

further and used our potential curves to calculate the second 

virial coefficients and, thus, the degree of ideality of alkali 

vapors (alkali systems are difficu't systems to look at experi- 

mentally and, in fact, Na-Li , as noted previously, has not been 

observed), and are now calculating some transport properties for 

1 41 
the vapor mix We also have betn able to criilcize the 

3 
assumed form of the  I potential curves customarily used and are 

suggesting a better form based oi, our calculations. 

This study of the alkali vapor presents n good example 

of how ab lnitio results can be dovetailed into traditional 

chemistry. 

By the further development of the techniques outlined 

above to handle cross shell correlations and other types of 

molecules, we feel that comparable energy surfaces can be 

obtained for other diatomic molecules.  In fact, this is currently 

our main mission in addition to extending these methods to open- 

shell excited state systems so that we may obtain accurate 

theoretical term values. 
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It should be emphasized chat there is no reason to believe 

that what we have learned in diatonic systems will be any simpler 

in polyatomic systems.  In fact, it is important to develo 

diatomic theory and diatomic calculations to a point where they 

are of use to the experimentalist before jumping into complicated 

polyatomic systems using old methods with their well-known 

deficiencies.  This is the compelling reason for refining our tools 

on diatomic molecules which, although perhaps of less immediate 

Interest to the tradiational chemist, provide a much more economi- 

cal medium for the evolution of new techniques. 

We feel that the calculated results on the alkali diners do 

represent an example of chemistry from computers.  The isolated 

energy point or wave function did not rore?cnt chemistry, but a 

potential energy surface then used to prer!'"c: binding energy, 

and ultimately transport properties must be considered genuine 

chemistry.  More important, ve are now thinking more compre- 

hensively in terms of complete chemical processes, potential 

energy surfaces, ground and excited scrtes, state functions, 

virial coefficients -- all of which for selected simple systems 

can now be obtained from computers and from computer calculations. 

It is more important now, therefore, than previously that 

theoreticians talk to experimental chemists because I think 

that man} chemists do not know how far the field of computational 

chemistry has come.  Likewise, theoreticians do not know how 

Intimately new experimental techniques are probing molecules and 

how much Interesting chemistry there is in the world of small 

molecules.  It is also important that theoreticians and the 

experimentalists feed these ab lnitio numbers into existing semi- 

empirical theories, and that through this process the seaienpirical 
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rules be upgraded by what night be called semi-ab-initio rules 

into which new relationships and concepts of molecular inter-actions 

obtained from accurate calculations are embodied.  This is an 

important added bonus available from the calculations due to the 

"adiabatlc" nature of the computing process.  We can "freeze" our 

numeric model and "look" at any stage of a process.  For example, 

we can now watch a molecule form or atoms collide in terms of 

their changing electronic charge density continuously being 

displayed on a cathode ray tube controlled by digital computers 

(Figure 5) during the chemical process numerically under way. 

Figures 8, 9, 12-17. 

In conclusion, we should say that the chemist is not going 

to be replaced by the computer -- at least, certainly not by the 

computer used in a purely theoretical manner.  However, I think that 

times have changed in the sense that the chemist can obtain sophis- 

ticated, relevant, and accurate answers from computers, particularly 

where difficult experimental conditions are required, where the 

142 
calculation is feasible but the experiment 's not.     (Computers 

don't burn up or melt when the temperature ol your theoretical 

model is increased; computers do net corrode if you perform a 

calculation on fluorine; and the time scale of your numeric 

experiment can be expanded or contracted at will.) 

The new capabilities we have with electronic computers should 

be interwoven into the experimentalist's thinking and he really 

should consider the alternatives when he seeks a particular 

physic, property of a simple system, "Should I measure it or 

should I compute itf"  We shall find that the limits of error in 

the computation often are comparable to limits of error obtainable 

experimentally, and sometimes that the derivation is more 

tractable and economical. 
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Figure 14-1? summarize a «cries of computer based charts i*4 films on atomic and molecular interactions. 
[Atoms to Molecules (Film series) by A. C. Wahl and U. Blukis, McGraw-Hill Book Co.. New York (1969) and 
). Chem. Educ. 45. 787 (1968); and Four wall charts of atomic and molecular structure by A. C. Wahl and 
M. T. Wahl, McGraw-Hill Book Co.. New York.] 

FILM LOOP m 
THE COVALENT BOND: FORMATION 

OF THE HYDROGEN MOLECULE 
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5 10     bohr 
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Fig. 14, Displays the beginning and end diagrams in the formation of the H2 molecule. 
The innermost contour corresponds to a probable electron density of .25 e* bohr3 and 
each successive outer contour decreased by a factor of 2 down to 4.9 x 10"4 e'/bohr3. 

294 



Chemistry from Computer„ 

FILM LOOP JS. 
THE IONIC BONO: FORMATION 

OF THE LiF MOLECULE 
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Fig. IS. Displays 3 sequences in the formation of the highly Ionic system LiF from the Li 
and fluorine atoms. Note change from U and F atoms to Li* anj F" atoms at a distance 
of 13.9 bohr» where the ionic configuration becomes more stable. In all diagrams the in- 
nermost cn'our correspond» to a probable electron density of 1.0 e'/bohr3 and each suc- 
cessive outer contour decreases by a factor of 2 down to 4.9 x 10"* e'/bohr3. 
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FILM LOOP 2 
THE REPULSION BETWEEN NOBLE 

HE-HE INTERACTION 
GASES: 
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Fig. 16. Displays the beginning and end diagram in the repulsive interaction of two helium atoms. 
As atoms move together note how the electron charge is squeezed from between the nuclei to the 
ends of the molecule. (A consequence of the Pauli Exclusion Principle.) In all diagrams the inner- 
most contour corresponds to a probable election density of 1.0 e'/bohr3 and each successive outer 
contour decreases by a factor of 2 down to 4.9 x 10"4 e'/bohr3. 
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FILM LOOP m 
The Formation of the Water Molecule from H and OH 

H 

H 

Fig. 17. Display» election density contour diagram for the OH molecule and the H atom and the final 
diagrams for the HjO molecule in its equilibrium configuration. In the OH and HjO diagrams the inner- 
most contour corresponds to a probable electron density of 1.0 e'/bohr3 and each successive outer contour 
decreases by * factor of 2 down to 4.9 x 10*4 e'/bohr3. in the H diagram the innermost contour has a 
value of .25 e'/bohr3. 
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Towards this view we "computer qi .ntum chemists" are 

developing our theory and procedures into self-contained "packages" 

or systems which should be treated as a new piece of experimental 

apparatus requiring little or no intimate knowledge of its 

detailed structure. Our ultimate goal is to make these 

chemical computing systems so self contained that the experimental 

143 
chemist can ask of them truly chemical questions    such as "What 

is the dipole moment of CaO?" or "What are the vibrational levels 

of VC1,?" or "What are the transport properties of alkali vapors?" 

This requires, of course, that our computing systems embody not 

only mathematical analysis but our procedures and experience in 

utilizing these theoretical techniques and that such systems are 

capable of continuous growth, revision and eventually learning 

from the system's own accumulating experience.  It is further 

mandatory, if these systems are to be useful to the non-specialist 

that a guarantee of reliability and precision relative to 

external reality be made.  This has formulated our philosophy 

that only methods capable of routinely producing chemically 

useful precision be incorporated into the final system concept. 

The non-specialist should not be seduced into believing numbers 

simply because they are produced in an officious manner.  Due 

to the meteoric progress being made in computer design and 

143-149 
capacity and the increasing sophistication       of "computer 

chemists", I have confidence that the above and more provocative 

chemical questions shall be posed to, answered by, and eventually 

even formulated by our new numeric apparatus. 
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NOTE: An interesting aspect of the pictorial material dealing with 
electronic charge density and its change during molecular forma- 
tion, «citation and ionization presented in this paper is that all dia- 
grams are produced and drawn automatically by digital computers 
linked to plotting devices (CRT and paper). This pictorial project is 
currently being made interactive through the use of the Laboratory's 
new graphical equipment. The author and hit associates are develop- 
ing what they call an Interactive Quantum Mechanics Laboratory 
through which a researcher or student can sit at a CRT graphic con- 
sole and by request "watch" a series of fundamental chemical pro- 
cesses which he personally may control and modify. Material similar 
to these diagrams has ben organized into a book and series of charts 
"Atomk and Molecular Structure: A Pictorial Approach," A.C. 
Wahl and MT Wahl. McGraw-Hill (1969). and a set of motion pic- 
tures "Atoms is Molecules," A.C. Wahl and U. Blukis. MoGraw-Hil! 
(1969). 
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Numerical Solutions of the Vlasov Equation 

J. Denavit 
Plasma Physics Division 

Naval Research Laboratory 
Washington, D.C. 

ABSTRACT 

Eis paper present a review of numerical solutions of the Vlasov equation 

by the Fourier-Fourier transform method and by the direct method of integra- 

tion in which the distribution function is pushed in the phase plane. Computer 

codes were written to implement both methods and numerical solutions of two- 

stream instability problems by both methods are compared. The Fourier-Fourier 

transform code uses fast Fourier transforms to compute the convolution term 

which appears in th? transformed Vlasov equation. This technique allows solu- 

tions with a large number of modes. In the direct integration code, the dis- 

tribution •"unction is not generally reconstructed at every time step. The 

examples presented in the paper suggest that, by properly choosing the 

frequency of reconstruction of the distribution function, it mcy be possible 

to minimize both the noise due to discrete particle interactions and the dif- 

fusion which occurs every time the distribution function is reconstructed. 

Preceding page Hank 
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I. MTBOOUCTIO» 

Collective phenomena in collisionless plasmas have been studied analyti- 

cally in terms of the VLasov equation, which describes the dynamics of a systems 

of many charged particles, and Maxwell's equations to describe the electromag- 

netic field. Analytical solutions have often been based on a decomposition of 

the spatial dependence of the distribution function into linearly independent 

modes, followed by studies of nonlinear coupling between modes. In numerical 

simulation of plasmas, a more direct method has been widely used. Here the 

positions and velocities .Tf a large number of particles moving in their self- 

consistent field are computed as a function of time.1  ' Thus the complete 

dynamical state of the system is known at every time step, and average quanti- 

ties of interest, such as number densities or temperatures, are computed when- 

ever desired. Although the number of particles which may be followed on a 

computer is much smaller than the number of particles found in actual plasmas, 

particule simulations are conceptually similar to actual experiments and have 

been successful to provide an understanding of a variety of plasma phenomena. 

An alternate approach to the computational study of collisionless plasmas 

is provided by numerical solutions of the Vlasov equation.   "' Since it is 

based directly on the same equation, this approach lies close to analytical 

methods. It yields itself easily to the study of linearized solutions and 

mode coupling effects. However, it is also applicable to strongly nonlinear 

problems and can therefore provide a useful link between particle simulations 

and theoretical results. Since it differs fundamentally in its approach from 

the particle simulation method, comparison of the two methods gives an insight 

into the validity and limitations of both methods. 

The present paper will be limited to one-dimensional problems involving 

only electro«moving over a uniform positively charged background, and periodic 

boundary conditions in space will be assumed. Let L denote the periodicity 
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Solutions of Vlasov Equation 

length of the pl-ama and ID    the plasma frequency.   Diatancea will be measured 

In units of L and tines will be measured In units of w"1.   It follows that 
P 

the electric field is measured in 'inits of ml>u> s/e where e and m are the elec- 
P 

tron charge and mass. The one-dimensiosal Vlaaov equation then takes the form 

of 
"5T + v 6f "oT ov (1) 

where f(x,v,t) denotes the electron, distribution function and B(x,t) is the 

electric field. Let E(x,t) = Eext(x,t) + Elnt(jt,t), where E*** i" •« external 

electric field and E n is the internal field due to electrons and the posi- 

tively charged background. The internal field is determined by Poisson's 

equation, 

Eint 
4« 

1 - f f dv (2) 

The solutions of the Vlasov equation obey the principle of conservation of 

density in phase. The density in phase is the distribution function itself 

in the present case. Let (xQ, v ) denote the coordinates of a particle in 

the phase plane at time t . At time t, the particle has moved to the phase 

point (x,v). Conservation of density in phase requires f(x,v,t) ■ f(x ,v ,t ). 

We will see in Section III that this property is used for the direct integra- 

tion of the Vlasov equation in phase plane. 

An important property of the solutions of the Vlasov equation is their 

tendency to acquire increasingly fine structures in phase plane %.<  time in- 

creases. This phenomenon may be illustrated in terms of the oscillations of 

an electron gas trapped in the potential trouga of an external electric field 

of the form E * EQsin 2nx/L. Neglecting the internal field which would not 

change the results qualitatively, the electron trajectories are given by 

Jacob! elliptic functions, 
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sin -j—   =   8 sn(u,tf)      , 

—   =   K cn(u,H)        , 
TR 

with u = 2nt/T      + u .    Here T     denotes the trapping period and v__ the trap- 
TJ\   o        In In 

ping velocity. The modulus R and the constant u depend on the initial elec- 

tron ccrrdinates in the phase plane. The limit cycle definii^ the boundary 

between trapped and untrapped electrons in the phase plane is shown in Fig. 1. 

If the electrons are initially distributed uniformly over the shaded area 

shown in Fig. 1(a), their phase density at t = 2T  will be uniformly distri- 

buted over the shaded area shown in Fig. 1(b), In the present case, the develop- 

ment of the fine spiral structure near the limit cycle is cause? 'ay the sharp 

anrjlitude dependence of the period of oscillations of trapped electrons in this 

region. As time increases, the description of the distribution function re- 

quires an ever finer resolution which ultimately exceeds the finite capacity 

of computer storage. 

(12) 
Ttus phenomenon has been discussed by Iynden Bellv   in relation to the 

approach to equilibrium of solutions of the Vlasov equation. When the struc- 

ture becomes so fine that its scale is much smaller than the characteristic 

lengths and velocities of the plasma phenomena of interest, its description 

may be abandoned and a coarse-grained distribution function f(x,v,t) defined 

by averaging f(x,v,t), 

1 +• 

7(x,v,t) = J J wx(x')wv(v')f(x +x',v +v',t)dx'dT'.  (3) 
0 -OB 

The weight functions w (x) and w (v) define the resolution and the exact form 

of the averaging operation. The choice of these functions is an important con- 

sideration in numerical solutions of the Vlasov equation. 
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(b) t = 2rTR 
Figure 1 Example of the  development   -f fine structures   in the solutions 

of the Vlaaov equation. 
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By «verting the sign of t In Eq. (1) It may be observed that solutions of 

the Vlasov equation are reversible. However, the averaging operation defined 

by (3) amounts to neglecting some of the information contain ' in the fine 

structure of f(x,v,t). li'us numerical solutions of the Vlasov equation using 

this averaging operation ars not exactly reversible. Since the computation 

of the coarse-grained distribution function also involves the averaging of 

different neighboring values of the original distribution function, the princi- 

ple of conservation of density in phase no longer applies exactly to the coarse- 

grained distribution function. 

Numerical methods for the solution of the Vlasov equation may be classified 

as (A) direct methods, in which the distribution function is represented 

directly in the (x,v) plane, and (B) transform methods, in which the distribu- 

tion function is first transformed (Fourier transformed for example) and the 

transformed Vlasov equation is then integrated numerically. Two types of direct 

methods have been used» (a) the distribution function may be pushed In the 

(x,v) plane along its characteristics/  ; or (b) the phase plane may be ini- 

tially divided into a number of uniform-density regions representing the ini- 

tial distribution function, and then only boundary points need to be followed 
la) 

in time/-7' Transform methods can also be subdivided into several types depend- 

ing on the type of transform used, (a) The distribution function may be 

(10) 
Fourier transformed with respect to both position and velocity,   this is called 

the Fourier-Fourier transform method, or (b) the distribution function may be 

Fourier transformed with respect to position only and the velocity dependence 

of each tr.ode represented by an expansion in Heraite polynomials.' '    The 

latter method is called the Fourier-Hermite method. 

This paper presents a review of the Fourier-Fourier transform method and 

of the direct method of integration in whi:h the distribution function ie 
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pushed in the (x,v) plane. Computer codes were written to Implement both 

methods and numerical solutions of two-stream instability problems by both 

methods are compared. 

The Fourier-Fourier transform method, originated by Knorr,  ' is con- 

sidered in Section II. Previous solutions using this method had been limited 

to a few modes. The present code uses fast Fourier transforms to compute the 

convolution term which appeal's in the transformed Vlaaov equation. This tech- 

nique yields a considerable saving in computing time and solutions with up to 

85 modes, capable of representing strong nonlinear effects have been obtained. 

The code written to Implement the direct method of integration is capable 

to generate "hybrid" solutions in which particles of different masses are ad- 

vanced as in a particle code, but the distribution function is reconstructed 

periodically as in a Vlasov code by an averaging operation similar to Eq. (3). 

The examples presented in Section III suggest that, by properly choosing 

the frequency of reconstruction of the distribution function, it may be 

possible to minimize both the noise (or spurious osculation*) due to dis- 

crete particle interactions and the diffusion which occurs evezy time the dis- 

tribution function is »constricted. 

II. THE FOURIER-FOURIER TRANSFORM METHOD 

It Fourier Trensforms 

The spatial dependence of the distribution function f(x,v,t) and of 

the electric field E(x,t) Is represerrbad in Fourier series as 

f(x,v,t) - £ gn(v,t)e
2TTlnx, 

and 

E(x,t) - y   3n(t)e 
2Trlnx 
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with 

and 

g^v.t)    =   Jf(x,v,t)e-2TTinxdx     , 

I/o)    =   jE(x,t)e-2ninxdx       . 
o 

The distribution functions g^(v,t) for'each mode n are now Fourier transformed 

with respect to velocity, 
4» 

with 

Hn(q,t)     =     J   gn(v,t)elqVdv      , 

%<v.t>    -   ^T    J     Hn(qst)e-^dg 

Since f(x,v,t) and E(x,t) are real, we must have 

;.n(v,t) = g*n(v,t),  E_n(t) = f»n(t)   (4,5) 

and 

H_n(q,t)  = H*n(-q,t)   . (6) 

The functions H (q,t) with n = 0,  £.,  ... are the characteristic functions1    ' 

of the velocity distributions corresponding to the spatial modes.   These func- 

tions have an interesting property relating them to the moments of the cor- 

responding distributions.    Let   (v  )   denote the moment of order v of g^(v), 

we have 

iV(vv>n       . (7) 

'q=0 

This property is used in Section II-5 to evaluate the plasma density, momentum 

and kinetic energy. We observe in addition that fine structures of the dis- 

tribution function in the (x,v) plane, correspond to values of H (q) for large 

n and q. Thus truncating the set of functions IL(q) at some finite values 
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in^ and <j^ provides a simple way to neglect the fine structure of the dis- 

tribution function without affecting any of its moments for  |n|<m     .   A 

further discussion of the significance of this truncation will be given in 

Section II-1*. 

After transformation and truncation at *m      , the Vlasov equation (1) msx 

yields 

_2_      +   2TTn --5      =     JSL C  (q,t)    ,        (8) 

where m 
max 

C (q,t)       =     £ (-2niEm)Hn_m(q,t)     . (9) 

Poisson's equation (2) gives 

m«-m max 

-2nifJnt      =     iHn(q=0,t) (10) 

for n ?0 and E^1* = 0. 

The term C   is a convolution which comes from the nonlinear term of the 
n 

Vlasov equation.    Solutions of the linearized Vlasov equation may be obtained 

by simply setting 

Cn(q,t)     =    -2niEnHQ(q) , (11) 

where H (q) is the characteristic function of the assumed spatially homogeneous 

velocity distribution. In the linear case Eqs. (8) decouple and their solu- 

tions may be carried out independently for each mode n ^ 0. The equation for 

n = 0 becomes trivial. In the analysis of some problems, such as in the quasi- 

linear theory, the Vlasov equation is solved including wave-particle interactions 

but neglecting mode-coupling terms. Such solutions may be obtained by using 

the convolution term (11) for n / 0 and setting 
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C
0(4.t) - Y       (-8trl\)H_B(q,t)  . 

""max 

(12) 

In this cue Eq. (8) for n ■ 0 is of course not trivirJ. and H (q) In the term 

(11) is time dependent. An example of such a solution will be given in Section 

II-6. 

2. Algorithm 

The characteristics of Eqs. (6) are straight lines of slope 2nn 

in the (t,q) plane as shown in Fig. 2. Because of the reality condition (6) 

it is only necessary to solve these equations for n * 0 so that all charac- 

teristics have positive slopes. At each time step, the value of H_(q,t) is 

obtained from the iterative formula 

I^1+1^(<lit)    =   H^q-STrn At,t-At)  + ^ (q-2rm At) AtCn(q-2nn At ,t-At) 

♦  7,~   4ÄtcJi;(q,t)     , (i)/ (13; 

in which the superscript denotes the number of iterations carried out. The 

results presented later iu Section II-6 were obtained using a einige iteration. 

The (t,q) plan« is covered with a grid with mesh sizes At and Aq. Values 

of q in Eq. (13) are chosen to fall at grid points as shown in Fig. 2, The 

values of q-2rrn At then do not fall at grid points and the first two terms in 

Eq. (13) must be interpolated. A nine-point Lagrangian interpolation was used 

in the computations presented. With the mesh size aq, we expect the distribu- 

tion function f(x.v.t) to be adequately defined over the interval -v  or <v  , max    max 

in which v  ""l/Aq . At the lower boundary q « -g^. the values of 

H_(q-2nn At, t-At) needed in Eq. (13) are unknown. These values are set 

equal to zero thus truncating the characteristic function at q = «^tBax* 

The convolution terms (9) are evaluated using discrete Fourier transforms. 

Consider two arrays of N elements X and Y  wherJ  the subscript m is defined 

modulo N, and take the discrete Fourier transforms of both arrays, 
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max 

CHARACTERISTIC 
SLOPE = 2wn 

'max 

Figure 2    Characteristics of Eq. (8) in the (t,q) plane. 
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N-l 2tri 

I v' «J 

m = 0 

N-l 2TT1 

■Zv* 
*J 

m=0 

where j is also defined modulo N. The discrete Fourier transform of the pro- 

duct X.Y yields 
N-l 2TT1 »J N-l 

NTX. Y B m 

m=0 

(IV) 

Thus the convolution may be computed in terms of discrete Fourier transforms. 

However, the modes E and H in the definition of C are not cyclic in the 'mm n       * 
subscript but are zero for |m|> a  .To achieve the same result with periodic 

arrays it is necessary to increase the size of the arrays by appending zeros. 
n 

Let N be chosen such that 3m       + 1 < N = 2 , where G is an integer, and set 

X.      =   -STTIE m and 
m-2 m"2 

for N/2-ni. <m <N/'2-taand X    == Y    = 0 for all other values of m in the 

internal 0 <m <N-1.    Then comparing (9) and (Ik) yields 

Cn=JXA-m   -   T-        ' (15) 

mO 

Using a fast Fourier transform algorithm^    '    ' the computing time becomes 

proportional to inlog^n     .    This compares with a computing time proportional 

to m2^ when the convolution C    is evaluated by direct summation.    Letting 

J max 3a_/Aq denote the number of grid points in the velocity transform 

direction and neglecting the logarithmic dependence, the computing time per 

time step is given by a J _ax"L_x»    The constant a for a non-ortimized code on 

the IBM 360/91 was found to be 0.2U ms. 
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3 . Convergence 

At each time step the first two terms in the right member of Eq. (13) 

are known quantities evaluated at the previous time step while the convolu- 

tion terms C * (q,t) are linear combinations of the preceeding approximation 

JL  (<!>*)• The matrix of the coefficients of these linear combinations is 

iqAt 
2 

El   ° 

B-l  E-2 

E2   El 

-2 

-1 

IL   0 

The iterative process defined by Eq.  (13) converges only if all the eigenvalues 

L, for j   = -m      ,  ...,  +m       , of this matrix are smaller than unity.    Let j max max 
T A   denote the transposed matrix of A.   We have 

~ m 
max 

I^I^TraceCAA1)    =   Z2^2*^ £     p/      . 

m=l 

where U   = 

|x,|    <   qAt'/m       0" 
'"■j1    *■   * max ' 

IS I  is the electrostatic energy of the system.    The iterative m 

process is therefore convergent if 

q      At /m       i ^max max <1 (16) 

This condition is satisfied by adjusting the time step At according to the mag- 

netude of the electrostatic energy. In the examples presented in Section II-6, 

values of At larger than 0.05 were found to satisfy the convergence condition. 
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k. Truncation 

We have observed earlier that the truncation of the functions H (q,t) 

at n = ±m   and q ~  ±q   results in the elimination of the fine structure 

w (x) =1 + 2 )  cos 2TTnx 
n^. 

and 

wjv) = 
Vv ' TTV 

The function w (x) has a half-width Ax =■ l/2m  and the function w (v) has a xx ' ' max vv ' 

half-width Av *• n/ci_. The choice of the cutoff values m  and q  must 

be made such that the half-widths Ax and Av are small compared to Che char- 

acteristic lengths and velocities of the system. For example, if the phenomenon 

being studied involves trapping oscillations with a trapping length LR, it is 

generally found that a half-width Ax =■ 1^,^16 is required. Thus the study of 

a two-stream instability in which the mode n = 5 is dominant requires a solution 

including approximately he modes. Both weight functions have negative side 

lobes which introduce ripples in the distribution function. For sufficiently 

small half-widths, however, these ripples remain on a small scale and have no 

effect on the large-scale features of the solutions. As noted earlier, the 

present averaging operation does not affect the moments of the distribution to 

any order. 

5. Conservation Laws 

Setting n = 0 and q » 0 in Eq. (8) yields 

-fc HQ(0,t) = 0  . (17) 
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I 
\ 

Let r(q,t) and H~(q,t) denote the real and imaginary parts of H(q,t). The 

reality condition (6) requires H (0,t) = 0 and Hr(0,t) doaotes the (nommalized) 

number of particles in the system. Thus, Eq. (17) is an expression of the con- 

servation of particles in the system. From Eq. (15) we observe that H (0,t) 

must remain constant, and particle conservation is therefore satisfied exactly 

in the numerical solution. 

Taking the derivative of Eq. (8) with respect to q and setting q = 0 and 

n = 0, in the case where no external fields are applied, yields 

Ö 
"FT =  0 

The reality condition (6) requires H7(q) to be an even function and H (q) to 

be an odd function.    Thus, the above equation reduces to 

bt   Wq=C 
(18) 

which is an expression of momentum conservation in the system. 

Taking the second derivative of Eq. (8), truncated at im. > and setting 

q = 0 and n = 0 yields 

m 

Ö 
"5T = 0 (19) 

In deriving the above equation, it has been assumed that no external fields are 

applied, and use has been nade of the reality condition (6) which implies 

(beH /öq2) „ = 0. The first term in the bracket represents the kinetic 

energy of the system, 

•■•«)„• 
and the second term represents electrostatic energy, 
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max 

■r 
m=l (2 Tito)2 

Thus, Eq. (19) is an expression of the conservation of energy in the system, 

T + U = constant. Since Eq. (19) was derived from Eqs. (8) truncated at T m  , 

a check of the energy cannot reflect errors due to truncation but only errors 

due to other causes. 

Momentum and energy checks are carried out in the numerical solution by 

differentiations of the central difference interpolation formula   for the 

functions li (q) and H (q) at q = 0. Five points on either side of q = 0 are used. 

6. Examples 

Case 1: Two-Stream Instability with Equal Beams 

Consider a two-stream instability resulting from the initial condi- 

tions defined by the distribution function 

f(x,v, t=0) = fQ(v) [3 + 2 € cos 2tTx] , 

with 

f (v) =  i   vae'v£/?vth  , 

^th^ 

and v.. = 0.3/n, e = 2.5 10~2. These initial conditions correspond to a sys- 

tem length L = 10»5^D where X = v../w is the Debye Length. The initially 

excited mode has a wavelength equal to the length of the system, i. e., cor- 

responds to the first mode n = 1» The linear growth rates for this problem 

(17) have been computed by Grant and Feixx  . The first mode is the only unstable 

mode and has a growth rate Y = 0.24. 

The solid curve in Fig. 3 corresponds to tho electrostatic energy with 

m  = 21, a   = 256 and An = 4. This energy grows at approximately the 

linear growth rate from t = 10 to t - 20 and saturates at 2.2$ of the total 

energy. The frequency of trapped electron oscillations at saturation is 
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t»_ = 0.33» which correspond, to a trapping periodt      = 19.2. After satura- 

tion the electrostatic energy oscillates with a period of approximately 20. 

The amplitude of the first «ode (n »1) is approximately on order of Magnitude 

larger than the amplitudes of the other nodes (n >2). The higher-order nodes, 

however, have a significant effect on the solution as shown by the broken line 

in Fig. 2 which corresponds to a truncation at «v v = 10. The solution was 

checked by reversing it at t = 20 and the snail broken line near t = 0 in 

Fig. 3 shows the deviation of the reversed solution fron the forward solution. 

The relative energy error is 2 10"*. 

Vlasov solutions for this example have been carried out by Armstrong 

Rielaotr ' using the Fourier-He mite method. These solutions, however, were 

limited to five and six spatial modes and deviate from the present results for 

t > 25. Particle simulations have also been carried out by Armstrong and 

KielscKT ' and by Oenavit and Kruer^ '. The results of these simulations are 

in close agreement with the results of the present Vlasov solution. 

Case 2; Two-8trean Instability with Unequal Beams 

Consider now an instability resulting from the interaction of a small 

beam with a Maxwellian plasma. The initial conditions are 

fo(v) 1 + 2« Yncos (2nnx * *n)  , f(x,v,t»0) 

with 

„* ¥p . A IQ"*, vd . 2.6 vp, vb - 0.25 vp, n, - 0.95, n, - 0.05, c « 2.5 W 

and initial phase.» „ chcaen at nndom. Thus the «mall be» contain. 5<of the 

plamme and it. me» velocity is 3.66 thermal velocities. These initial condition, 

correspond to a «y.ten length of 100 >p. 
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The dispersion relation for this case is 

■'£)* *(#£?M (20) i-  2tm 

P 

in which C = «>/k and z' is the derivative of the plasma dispersion function   • 

Solving thia equation for the growth rate Y = Im"> gives the curve shown in 

Fig. h.   We ncte that modes n = 1 through 9 are unstable. 

Linear numerical solutions, based on the convolution term (11), were 

carried out and the corresponding growth rates are shown by the circles in 

Fig. **.    The values of Y given in Fig. h  correspond to the growing modes of 

the plasma. For each value of n, however, the plasma also has damped modes 

which correspond to other zeros of the dispersion relation (2C). An initial 

perturbation in density generally excites several damped modes in addition to 

the growing mode corresponding to a given value of n. Linear solutions thus 

generally display an initial transcient which must damp away before the growth 

rates corresponding to Fig. k  can be observed. In the case of the weekly grow- 

ing modes such as n = 1, the transcient behavior was found to be dominant for 

long times (t »■ 100). Thus it is unlikely that such weakly growing modas 

can be observed in a nonlinear problem. 

A "quasi-linear" numerical solution, in which mode-coupling terms were 

neglected, was carried out using the convolution terms (11) and (12). The 

electrostatic energy for this solution is shown in Fig. j.    The most unstable 

mode, n ■•* 5, is dominant in this solution. The electrostatic energy saturates 

at approximately 2.1* of the total energy. The frequency of oscillations of 

electrons trapped in the potential trough of the dominant modt is * = (2rmE ) 

«O.l'iS, for n = 5. We observe that this value is olose to the growth rate of 

mode 5. After saturation, the electrostatic energy drops sharply and oscillates 

at a lower level. 

323 



Denavit 

-—*• 

0.15 

OK) 

0.05 

■ FROM DISPERSION RELATION 
•    FROM LINEAR NUMERICAL 

SOUJTION 

I    „     l l. 

Figure h Linear growth rates for two-strjam instability with unequal 

biamt;, Case 2. 
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Figure b Electrostatic energy for  "quasi-linear" solution of two-stream 

instability    ith unequal beams, Case 2.   (mode coupling is 

neglected). 
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The electrostatic energy for the nonlinear solution, including mode cou- 

pling, is shown in Fig. 6. This solution was carried out with ta^ = h2, 

<3   = 25/v and Aq = <Lnaj./l28- The electrostatic energy saturates at approxi- 

mately 1.6$ of the total energy then falls and shows several oscillations at 

a lower level. We observe that the "quasi-linear" solution shown in Fig. 5 is 

qualitatively correct. The effect of mode coupling is to decrease the growth 

rate and lower the saturation value. 

The density in phase near saturation is shown in Fig. ?• Numbers fron 

1 to 9 indicate relative densities. Blanks correspond to densities which are 

less than one-tenth of the maximum density. Negative signs correspond to nega- 

tive values of the density larger in magnitude than one-tenth of the maximum 

density. 

Particle simulations have been carried out for this example by Morse and 

Nielson^5' and Denavit and Kruer*  '. The results of Morse and Nielson agree 

only qualitativelj with the present Vlasov solution. The differences, however, 

may be attributed to the longer periodicity length considered by *.hese authors 

and the random nature of their initial conditions. T'.ie results obtained using 

Kruer's finite-size particle code with a quiet startv '  agree quantitatively 

with the present solution out to t =*■ 70» after which the two solutions remain 

in qualitative agreement. 

Case 3: Echo 

The echo problem considered here corresponds to an example given by O'Neil 

(19) and Gouldx  . A uniform plasma with a Maxwellian velocity distribution is 

initially excited by an external electric field pulse with wave number kx. 

Mode kx then decays exponentj ».xly at the Landau damping rate and the perturba- 

tion part of the distribution function takes the form fx(v) exp (-i k^x. + ik^vt). 

For large t the integral over v of this distribution function phase mixes and 
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Figure 6 Electrostatic energy for nonlinear solution of two-stream 

instability with unequal beams, Case 2, by Fourier-Fourier 

transform method. 
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Figur? 7 Density in phase near saturation for two-stream instability with 

unequal beams, Case ?, by Fourier-Fourier transform method. 
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does not result in any density perturbation. A second wave of wave number kg is 

then excited by an external pulse at time T. This wave also damps out but it 

modulates the distribution function of the first wave to give a second order 

distribution function of the form fi(v)f2(v)exp{i(k2-ki)x-i(ke-ki)v[t-keT/(ks-ki)]}. 

At time T - ksT/(k2-ki) the coefficient of v in this exponential vanishes and the 

integral over v no longer vanishes. A new wave, called echo, then appears in 

the plasma with wave number k3 = ka-ki. 

In the example considered here, kiX = l/2 and kgX = /2. Thus IS3A = 

1//2 and the echo appears in the initially excited mode at time T - 2T. The 

thermal velocity is chosen as v.. = 1/2"/2 = 0.113 so that ki and kg both 

correspond to mode n = 1> while ke corresponds to mode n = 2. Mode n = 1 is 

excited initially by applying an external electric field E^x (x) = E sin2TO 
O ÜK 

with EnD = 0,Wv.. from t = 0 to t = 0.2, and mode n = 2 is excited by apply- 

ing the external field E®xt(x) = EDRsin^ TO from t = 10 to t = 10.2. Only five 

spatial modes are retained in the present computation. Since the echo depends 

on the *"ine structure of the distribution function it is important in the present 

case to retain this structure and a^ is chosen so that modes n = 1 to n = h 

are not turncated out to t 30, thus 8nt 755- With Aq = „      /256 
max  '"'  " " "max    max  "      '•* %»x 

the distribution function is adequately represented out to v  ""l/Aq = 3v .. 
niftx oil 

The density perturbation for mode n = 1 is shown on a logarithmic scale 

at (a) in Fig. 8. It rises rapidly during the short driving period, then decays 

exponentially at the landau damping rate (V *" - 0.1+0). The echo appears be- 

tween t = 10 and t = 30 with a maximum at t = n =20. The echo is shown on a 

linear scale at (b) in Fig. 8. The results shown on this figure agree with the 

results shown in Fig. 1(A) of 0'Neil and Gould. 

111. DIRECT INTEGRATION PHASE PLANE 

1. Algorithm 

According to the principle of conservation of density in phase, the 

solution of the Vlasov equation may be written formally as 

327 



Denavit 

H|(«'0.ti: 
DENSITY PURTURBAT10N FOR MODE m > I 

(a) 

H,(vO,i>: DENSITY PERTURBATION FOR MODE m«l 

.005 
Figure 8. Particle density 
perturbation for echo prob- 
lem, Case 3. 
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Figure 9    Characteristics of Vlasov equation in phase plane. 
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f(x + 6x, v + 6v, t + At) = f(x,v,t) (21) 

in which 6x and 6v are the position and velocity increments during the time 

interval at of a particle located at (x,v) at time t. The phase plane is 

covered with & rectangular grid with mesh sizes Ax and Av as shown in Fig. 9. 

The grid extends fror -v to +v  and the value of v   is chosen large 
me.-*     max max 

enough so that the grid covers all significant portions of the phase plane. 

The position and velocity increments are computed by considering sample 

particles of masses f(x.,v.,t) located at the grid points (x.,v,), and compu- 

ting their position and velocity increments 6x. and 6v., during the time inter- 

val At. The sample particle locations in the phase plane at t + At no longer 

correspond to grid points and the distribution function must be reconstructed 

at that time by distributing the mass of each sample particle among the neigh- 

boring grid points, 

I 
= h *(*«+6x«,,.v1 + fOy.V.t+At) - j,K jk'-k 6vjk,t+At) VY"xr6Vwv(v-vV (22) 

Applying this operation to the solution of Vlasov's equation (21) yields 

f(xj/,vk,,t+At) = ik ^vv^^-^VVv-v'V     (23) 

The weight functions w and w determine what fraction of the mass of a sample 

particle is assigned at each neighboring grid point. The discrete sum in Eq. 

(22) defines an averaging operation similar to Eq. (3). In the presait method 

the averaging operation must be carried out by a discrete sum instead of an 

integral since the phase plane itself has been discretized by the introduction 

of a grid. Weight functions for which the averaging operation conserves any 

finite mrniber of moments are derived in Sec. III-2. It is not possible, however, 

to derive functions w and w for which all moments of the distribution function 

are conserved, as was done in the Fourier-Fourier transfoiri method. This 

results in some diffusion of the distribution function in the phase plane. 
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The evaluation of the position and velocity increments 6x.. and 6v„ of 

the sample particles is presented in Sec. XII-3. The method uses an area 

weighting scheme and is based on a Lagrangian formulation of particle dynamics 

in which energy is conserved*  . 

In a number of problems of physical interest, the initial distribution 

function consists of several relatively cold beams and only a fraction of the 

phase plane is occupied by particles. As the solution proceeds in time, the 

principle of conservation of density in phase (which is still approximately 

satisfied by the numerical solution) requires that this fraction must remain 

constant. Where no particles are present, the distribution function is zero 

and does not need to be advanced. This is achieved in the code by setting a 

threshold value (for example 10 5 times the maximum value of the distribution 

function) below which no sample particle is considered. The electric potential 

is computed by Fourier transforms so that the electron density is automatically 

renormalized at each time step. Thus, the slight loss of particles resulting 

from a finite threshold does not result in the build up of a net charge in the 

plasma. This feature of the direct method of integration, which has no coun- 

terpart in transform methods, may yield a considerable saving of computing time 

when multidimensional problems are considered. 

It is not necessary to reconstruct the distribution function by the averag- 

ing operation (23) for every time step at which the electric field is computed. 

If &t is the time step used to advance the sample particles, the electric field 

needs to be computed after each At increment, but the distribution function can 

be reconstruct»i only every NAt, where N is a properly chosen integer.  In 

addition to string computing ti.M, this procedure reduces the diffusion in phase 

plane caused by application of the averaging operation. 

The Vlasov solution described above in which the distribution function is 

reconstructed only every Nth time step begins to resemble particle solutions. 
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Particle solutions in which particle of different masses are loaded on an 

(x,v) grid to represent the initial distribution function have been used by 

fyers  . In such solutions the plasma consists of a number of discrete small 

beams, which are subject to instabilities having growth rates Y^Uv where 

k = 2Ttn is the wave number and 4v is the velocity interval between beams 

(equal to the mesh size). In particle solutions, the distribution function is 

never reconstructed (N = "), and beaming instabilities occur at time t  = 

2rr/kA v (see Appendix), ~y reconstructing the distribution function at time 

intervals which are small compared to (k& v) 1, the plasma is forced to be- 

have as a continuum and no beaming instabilities can develop. 

2. Weight Functions 

To derive weight functions w (x) and w (v) for which the averaging 

operation defined by Eq. (22) conserves a finite number of moments it is suf- 

ficient to consider the one-dimensional operation 

f(v./) = V f(v, + 6V )w(v.'-v -6v ). (2k) 

The weight functions thus found will be applicable to either coordinate or 

velocity. Such weight func+^ons, conserving zeroth, first and second order 

(7) moments have been derived by K-W Li  . 

a. Moment Conservation Conditions 

The moment of order n before averaging is 

<vn> =5 (v1 + 5v.)
nf(v + 6v ). (25! 

After averaging the same moment becomes 

<v~n> = y v
n, r 

0 
J, J ■V (26) 

Substituting (2b) into (26) and reversing the order oi the suns over j and J 

yields 

\ 
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i i' 

The Bonents (25) and (26) are therefore equal if the equality 

I v3' WW*J)=(V+*/ (27) 
r 

holds for all values of v. + 8ir.. 

h. Derivation of Weight Functions 

Let k = i '-j, since the variable v is represented on a grid with mesh 

size Av we have v. / = (j + k)Av, v /-v = kAv and v. = jAv. The moment 

condition (27) becomes 

£ (ä*)nw[(k-p)Av] = (dip)n (28) 

where p = 8v./ Av. We may assume without loss of generality that 8v. is positive 

and smaller than the mesh size Av so that 0 sp <1. The function w(v) is now 

assumed to be even and to extend over Q mashes Av on either side of the origin. 

The condition (28) is satisfied if 

Q 
j  kmw[(k-p)Av]=pm 

k=l-Q 

(29) 

for m =0, 1,  ..., n.   All moments up to order n will then be conserved. 

We first assume that n is odd and set Q = (n+1) /2.    Consider the Lagran- 

glan interpolation with n+1 points of the function p .    Since m s n, the 

(21) interpolation is exact and we havev    ' 

I k\<n+1>   (p) =pffi (30) 
k =l-ft 

in which the functions A. (p) for 1-Q * k * Q and 0 s p s l are the Lagrangixui 

coefficients with n+1 points.    Comparing (29) and (30) yields the desired 
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weight function, 

wfc-p)Av]=A£n+1)(p), 

or 

v(v) =A^n+1^(k—p-),       for       (k-l)Av  sv skAv    (31) 

with k = (l-n)/2, ..., (1 +n)/2.   For n even, we set Q = 1 +n/2.   The 

Lagrangian coefficients in this case do net yield even weight function.   Even 

weight functions nay, however, be obtained by synmetrization as follows, 

w(v) =• 

t^% ♦ j +fe) -(|+l)Av   sv *-§Av 

"? 

*[^+1) (k-iT-)^k+1) ^"k + sH       (k_1)AV S V SkAV (52) 

,   (n+l)(    +n._y_) 
* A n     ^2     Av; 

"2 
§Av   « v s (|+l)Av 

with k =l-n/2, ..., n/2. 

c. Examples 

For n = 1 the averaging operation (£*)■) conserves particles and 

momentum. Since n is odd, Eq. (31) is applicable and we have 

W(D(V)   .JV-!-)    -!-■£ 
-(Dz for 0 < v < Av. In the interval - Av iv<0, the function w^ '(v) is defined 

by symmetry and it 5.6 zrrofor |v|>Av. This function is illustrated at (a) in 

Fig. 10. For n = 2 the averaging operation conserves particles, momentum and 

energy.   Since n is even we apply Eqs. (32), 
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*U£>(1-V-)    +A?)(V)]=1    v   +j   v(1    v} 
'ST" »▼' Av 

rfejT) = 

AT V      AV' 

for 0 «v $4v 

for JT  sy s 2Av 

This function is illustrated at (b) in Fig. 10, it extends over four meshes 

and has negative side lobes.   The fifth degree weight function w"'(v) is 

illustrated at (c) in Fig. 10.   This function extends over six meshes and has 

negative and positive side lobes reminiscent of the weight function 

sin(TTv/Av)/(nv/Av)  used in the Fourier-Fourier transform method. 

Most of the computations presented in Sec. III-U are based on the qua- 

dratic weight function w^ (v) for w (x) and w (v). However, some computa- 

tions using linear and fifth-degree weight functions are also presented. 

5.    Position and Velocity Increments 

Let f..   = f(x.,v ,t ) denote the value of the distribution function 
JA J     K     O 

at the grid point (x.,v.) at time i   and let  Gi^jft) denote the displacement of 

the sample particle of mass f..  located at (x^v^) at time tQ.    The position and 

velocity increments  ftc-j    and  8v £ = äc-^ will be computed as functions of 

,(20) time using a Lagrangian formulation derived by R. Lewis^"'. This formulation 

yields an algorithm for advancing sample particles which consen.es energy in- 

dependently of the mesh size Ax. 

a. Lagrangian Formulation 

The electrostatic potential T(x,t) is defined in terms of a base 

function *(x) and a set of time dependent coefficients cr.(t) by the linear 

combination J-l 

Y(x,t) = £ cr,(t)«l:-x ). (33) 

j=0 
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Here x. = JAx, for j =0, ..., J-l, denote the grid point locations and J is 

the number of grid points in the x direction. The Lagrangian for a system of 

charged particles is 

J-l   K J-l   K J-l 
L   -  I   I  * V*t   + I     I fJkI    "i'WV 

j=0   k=a J=0   k=4 i=0 

1 J  p-1 -|2        J-l 
(3*) 

dx 

where K is the number of grid points in velocity and «'(x) = d*/dx. The first 

tern in Eq. (3*0 is the kinetic energy, the second term is the negative of the 

interaction energy and the third term is the electrostatic energy of the system. 

The equations of motion are obtained by taking variations with respect 

to the particle displacements  St.., 

J-l 

6'xjk   =  Jc^tMxj +teJk^1) (35) 
i=0 

and Poisson's equation is obtained by taking variations with respect to the 

potential coefficients a., 

J-l   1 1       J-l K 

Y a
±   J  * '(x-Xj)» '(x-xjdx = J *(x-x )dx - ££ 'lk»(*1+*ik-*j>   (36) 

i=<>   ° °      i^k^ 

b. Base Function 

The specific algorithm to be used now depends on the form of the 

base function *(x), which determines the charge sharing scheme to be used in 

advancing particles. In the present algorithm, particles having a triangular 

charge distribution with half-width Ax are used. The corresponding base 

function is 
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•(x) • 

for ¥■ s x * —g— 

for-^«^f 

for    ^-i* MT- 
Let x. ( denote the grid point location closest to the sample particle (jk) 

anu aet p = (x. + ^„-x. ,)/&x, then  jp|   4 $.   When the above base function is 

substituted into the right sesfcer of Eq. (35) the SUB reduces to three terns 

and we have 

Substituting the base function into Eq. (36) yields 

(37) 

[-a as, ,+6a,-2Q^"a44»l " * -p.i' ^x   ^.2-^.1^^*1   J^ 

where 
J   K 

(38) 

(39) pj =11 fi**<WV 
14 kd. 

is the charge assigned to grid point J.    Note that the left member of Eq. (38) 

is a finite-difference representation of the second derivative of the potential. 

Since periodic boundary conditions are assumed it is convenient to solve 

Foisson'e equation by discrete Fourier-transforms.    Let 
J-l 2TT1 

5n=I    V 
J=0 

nj 

and 

«.-I 
3=0 

J-l      2ni nj 

V 

denote the transforms of the arrays a. and p..   Multiplying Eq. (38) by 

exp(2nind/j), sumring over j and solving for c«n yields 

i   , 
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-  .   -\  
0,1     Ujsin2 2J. (l-|. sin**) ' (k0) 

The array a.  is then obtained by taking the inverse transform of ü . 

The time integration for the quantities 6 x  and a is carried out by a 

conventional leap-frog scheme. Since the distribution function requires simul- 

taneous knowledge of the particle positions and velocities, a half-time step is 

taken just before and after each reconstruction of the distribution function. 

The computing time to advance the sample particle was found to be approxi- 

mately 0.3 mo per particle, per time step, on the CDC 38OO. The computing time 

to reconstruct the distribution function with quatratic weight Auictions was 

approximately 0.7 ms per particle, 

c. Energy Conservation 

As a consequence of the Lagrangian formulation, the present algo- 

rithm •*- advancing the sample particle conserves momentum and energy indepen- 

dently of the mesh size ^x . The expression for the total energy is provided 

by the Hamiltonian 

J-l K J-l     1 

x-xk)dx CH) 
j=0 k=l i,J=0 

The first term in the rig.it member of Eq. (Ul) represents the kindle energy 

of the system and the second term represents the electrostatic energy U. The. 

latter term may be conveniently evaluated using the Fourier transformed array 

J-l 

U(-.) «2? öä  sin2 ÜH (1,2. sin2 Ü2. » 
n=0 J    5     J 

(U2) 

4. Examples 

The problems of two-stream instability solved in Sec. II-6 by the 

Fourier-Fourier transform method are reconsidered in the present section using 

the direct method of integration. 
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Case 1: Two-Stream Instability with Equal Beams 

The electrostatic energy for three solutions of this problem is shown 

in Pig. 11. All three curves correspond to the same maximum velocity, v   = 

k.2  v.. , the same mesh sizes, Ax = l/32 and &v = 2v  /l20 and the same time 
&n max 

step at a 0.2. The threshold, i.e., the minimum value of the distribution 

function for which a sample particle is considered was set to zero. 

The solid curve corresponds to a reconstruction of the distribution func- 

tion every ten time steps, using quadratic weight functions. This curve shows 

good agreement with the 21-mode Fourier-Fourier solution given in Fig. 3. The 

broken line corresponds to a reconstruction of the distribution function at 

every time step, also using quadratic weight functions. We observe a decrease 

in the amplitude of trapping oscillations. This is attributed to a difiusion 

of the distribution function in phase plane due to repeated applications of the 

averaging operation defined by Eq. (22). Note that although energy is conserved 

in the averaging operation, higher moments are not conserved. This tends to 

flatten the distribution function resulting in the escape of trapped particles. 

The curve drawn with dashes and dots in Fig. 11 corresponds again to a 

reconstruction of the distribution function at every time step. This time, 

however, linear weight functions were used. The distribution function flattens 

rapidly in this case, filling the hole located at the center of the trapping 

region. 

Because of the rather long tails in the distribution function in the present 

problem, particles are lost over the boundaries at v = ± '__„• For both solu- 

tions with quadratic weight functions, the relative particle loss is h  lO-4. 

After corrections for particJss lost over the boundary, the relative energy 

error is 5.5 lO-5. For the solution with linear weight functions, the relative 

particle loss 13 2.7 lO*3 and the relative energy error after correction for 

lost particles is 6.2 lo" . 

(v 
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3.0 ICH- 

' 2.0 K>" 

1.0 Iff4 

 «MMUTIC WEIGHT rUNCTMNS, N-M 
 WUMTIC WEIGHT FUNCTIONS. Nil 
 UNCAR WEIGHT FUNCTIONS. N.I 

Figure 11   Electrostatic energy for two-stream instability with equal 

beams, Case 1, by direct integration method. 

i.S 10-« 

1.0 io-*l 

0.5 IO-» 

Figure 12 

QUADRATIC WEIGHT FUNCTIONS, AX «0.008 

QUADRATIC WEIGHT FUNCTIONS, AX« 0.0« 

FIFTH DEGREE WEIGHT FUNCTIONS, AX «0016 

Electrostatic energy for two-stream instability with uneq-jal 

beams, Case 2, by direct integration method. 
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Solutions of Vlasov Equation 

An additional computation ins carried out in which the distribution func- 

tion was never reconstructed. The code then operated as a particle code with 

particles of different masses initially arranged in a regular array in the phase 

plane. Phase plots for this run showed beaming instabilities starting to appear 

at t = 10. The total electrostatic energy showed only minor deviation from the 

solid curve in Fig. 11 out to t ** 22, after which it broke into spurious 

oscillations. 

Case 2: Two-Stream Instability with Unequal Beams 

The total electrostatic energy for three solutions of this problem is 

shown in Fig. 12. All three curves correspond to the same maximum velocity 

v  = W . velocity interval Av = 2v  /320 and time step At = 0.2 with the 
max   P niax 

distribution function reconstructed every 10 time steps. A threshold equal to 

10"5 times the maximum value of the distribution function was set. Below this 

threshold no sample particles were considered. 

Note that the present case involves five trapping regions (mode n = 5 is 

the most unstable mode) so that smaller values of Ax should be considered than 

in the previous case. The solid line in Fig. il corresponds to Ax = 1/128 

with quadratic weight functions. This curve shows good agreement with the 

Fourier-Fourier solution shown in Fig. 6 out to t *" 60, after which the two 

solutions remain qualitatively similar. The broken line corresponds to Ax = 

l/64, again using quadratic weight functions. The amplitude of trapping oscil- 

lations is reduced in this case. The curve drawn with dashes and dots in Fig. 

12 corresponds to Ax = 1/61* using fifth-degree weight functions. We observe 

that the use of higher-order weight functions tends to reduce somewhat the dif- 

fusion of the distribution function in phase space. 

The density in phase near saturation with A x = l/6h  and fifth-degree 

weight functions is shown in Fig. 13. This phase plot may be compared with Fig. 

7 which shows the density in phase from the Fourier-Fourier code at approximately 

the same time. 
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Solutions of Vlasov Equation 

The relative particle loss with ax = 1/126 and quadratic weight functions 

is k 10"8 and the relative energy-error is 3.5 10"4. Comparable values of the 

particle loss and energy error ore found in the other two computations. 
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APFEMDIX 

Beaming Instability 

The time interval between reconstructions of the distribution function in 

the method of Sec. Ill may be estimated in terms of Dawson's theory of plasma 

(22) 
oscillations of electron beams*  , Consider a one-dimensional system of elec- 

tron beams with velocities Vff = oi v and densities N0 = N(Va) Av, with 

o = 0, * 1, ±2, ..., moving over a neutralizing positively charged background. 

Let n^Xjt) and vff(r,t) denote perturbations in density and velocity for each 

beam. The linearized equations of motion and continuity for each beam and 

Poisson's equation yield 

0*0 
ot 

.+ 
bv 

v     g 
a   6x ■ f • 

öt 
+ bv 

«a Oil 
6x 

♦   v   i 
»   Ox 

ox 
= - k we 25 

a ■v. . 

o, 

Assuming solutions of the form A(x,t) = A(»,k)e~ * " 'for the perturba- 

tion quantities yields 

n_(« k)   -   UneZ ig 

V   (»   k )     a     ltWe2 1 
a m        k(«»-kVff) (hk) 

E(«,k)    = --to*- (U5) 

with the dispersion relation 

— *  (*-kv0)s     "    x ' <U6> 

Dawson has shown that for & v -*0, the left member of Eq. (46) may be written 

aj the sum of an integral and a singular term. For a Maxwellian beam densi.: 
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distribution H(Ve)   =   (n / </W y^exp^/Zv^.) the dispersion relation 

becomes 

Jg.  la     e-^e^llVkAv   =1 + ^   +   CZ(C) (*7) 

where Z(C) is the plasma dispersion function with C = *//2 kv tfa. The positive 

sign is to be used in Eg.. (47) for ln»>0 and the negative sign for lmo<0. 

For each k, Eq. (47) has two complex conjugate roots corresponding to each 

beam. Letting »a = ctff + ißa and ^ ■ <f & y//z v  yields 

+ koAv , 

and 
A  - + *Av li„ ^v+v, 

(    /STTAV «I 

(1*8) 

(49) 

- | in |(1 + k*X* + ^ReZ^))2 + (C^ImZCC^))2!! 

Eqs. (1+3) and (44) are normal modes for a given k and satisfy the normali- 

zation relation 

1 0 for » 4 •' , j 0 for « 
E ON  (» + »' " 2kV )n Kk)nJ»',k) = 
a  2*0 a  a        -a | H(«,k) for » = (•» 

(50) 

For Av**0 and a Maxwellian beam distribution the function H(u>,k) reduces to 

H(»0,k) « * SSi 
°       kAv *P%-ll*v<w]| (51) 

To verify that the instability occurring in the code described in Sec. Ill, 

when the distribution function is not reconstructed, is indeed a beaming in- 

stability, a computation was carried out for a Maxwellian beam distribution 

with v.h/Av ■ 5. An initial density perturbation was applied to the central 

beam, 
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«K- _ „ cos kx 
o = 0 

f or ö = 0 

(52) 
|  0 for Cj! o 

with * = 0.0065 and kX_ = 11/5. Ho initial velocity perturbation «as applied. 

The central beam velocity at x ■ "/2k from the code of Sec. in is given by 

the solid curve in Fig. 14. There is a gentle growth out to t = h€,  followed 

by a sign reversal at t = k& and a very steep growth for t > U8. The electric 

field for this computation first drops rapidly to very low values, then sudden- 

ly reappears to reach a maximum 23 times its initial value at t = &*hs&v = 50. 

Expanding the velocity perturbation of the central beam into normal modes 

and using the normalization relations (50), the initial conditions (52) yield 

1     Av 
i«0t <feO     _        p     flv   v2i2 ...„ v, r *e       o  

£T  " Ti$* v^8in to 5 tfnA* ♦ W)3 (53) 

The terms of the sum in Eq. (53) oscillate with the frequencies a given by 

Eq. (W), approximately equal to the Soppier frequencies k©Av of the beams 

and grow exponentially with growth rates 0 given by Eq. (^9). The damped 

terms corresponding to the negative sign in Eq. (^9) are ignored. The expre- 

sion in brackets in the denominator of Eq. (53) is the landau denominator 

which in the present case has a minimum near (^ - 1.8. Thus, the dominant 

terms of the sum in Eq. (53) occur for J'O, which corresponds to the 

minimum of «£ and o ** ± (1.8) /2vth/Av *" 13 which corresponds to the minimum 

of the Landau denominator. 

For t < 2n/kAv » 50, the terms corresponding to o *■ ± 13 phase mix and 

the behavior of the velocity perturbation v^- is given by the terms near 

o m 0. The growth rates for these terms is ßg- a O.08. The circles in 

Fig. lU give values computed by taking o . 0, * 1, ±2. These values are 

in good agreement with the computer results obtained by the method of Sec. 

HI. 
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Solution« of Vlasov Equation 

The growth rat« for the tens corresponding to o "* ± JJ is ß ± „ = 0.06. 

for t *" 2w/Stftv s ^) these terns no longer phase sdx.    By this time they 

have grown by a factor of approximately 20 and therefore give rise to a 

strong echo.   This is evident in the solid line in Fig. Ik for t > h&, and 

also agrees with the electric field results which show a sudden r-agfowth 

with a Hudam at t = 50 which is 23 tines the initial electric field. 

10 

*JWW 

10 -s 

      NUKHtAL 

O        Ai/ALyricAL 
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to 

Figure 14   Velocity perturb».»ion of central beam for beaming instability test. 
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Choice of Grids in Low-j8 Fluid Computations 

N. K. Win«* and E. C. Bowers 
Princeton University 

Princeton, New Jersey 

ABSTRACT 

»hen the magnetic stress is large compared to the 
plasma pressure, the magnetic field geometry controls the 
plasma behavior. For finite difference calculations of this 
behavior, the grid should be chosen to fit the geometry. 
Three coordinate systems are presented, and their relative 
merits are compared. Some general technigues for a lov-/9 
simulation — in particular, the conservation-Ian form of 
the eguations and the "symbolic" style of programming — are 
discussed and recommended. A proposed simulation of the 
adiabatic toroidal compression experiment is used as an 
illustration of the advantages of writing a fluid code in 
curvilinear coordinates. 

X  IMTROD0CTI0N 

Numerical calculations in plasma physics are routinely 

more complicated than hydrodynamic or gas-dynamic 

calculations with similar initial and boundary conditions. 

First this is because ne are dealing with a minimum of tvo 

species. Fields are usually important as veil: an 

electrostatic field in the B*0 case, or the combined 

electric and magnetic fields in the general case. 
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We consider hero the low-/9 rogiaw of plasma physics in 

■kick tke magnetic field is so strong tkat tke offset of tke 

plasm on it au\ b« ignored. Tken tke physics of tke 

profiles looks even' less like tke field-free one; tke 

Magnetic field plays a dominant role in tke determination of 

tke fluid notion. Velocity and current components are very 

different in magnitude parallel and perpendicular to tke 

magnetic field. 

Tke ION-/} case can be studied numerically by particle 

simulation, and tkis treatment is essential «ken details of 

tke velocity distribution function ar» important, as in 

collisionless regimes, or «ken loss cones are present, 

iovever, «ken the plasma is collisional and velocity-space 

instabilities are not important in transport processes, a 

fluid model can usually obtain the results of physical 

interest «ith less computition. For the lov-/3 case, this 

means going from an essentially Lagrangian coordinate system 

associated «ith the particles to an Eulerian coordinate 

system associated with the magnetic field. 

There is a class of "local" and "slab" problems of 

interest in this case, but for comparison «ith experiment, a 

fluid model must deal «ith the global properties of a plasma 

and must take note of the magnetic-field geometry of 

interest: cylindrical, toroidal, dipole, etc. He «ill 

discuss some of the important considerations in tailoring a 

coordinate system to the geometry, and reducing the system 

of differential equations for the fluid variables to 

difference equations on a mesh. 
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Low-0 Fluid Computations 

In th« finite and high-0 regimes it is frequently 

convenient (Boris. 1969) to use • Cartesian coordinate 

system, vita J8 one of the variables to be determined; then 

quantities suck as current and nass flux are not readily 

related to Magnetic surfaces. Thus Cartesian coordinates 

have the drawback tkat seme physically interesting 

parameters are inconvenient to calculate. On the other 

hand« they have the advantage that derivatives of the basis 

vectors vanish. This greatly simplifies the difference for« 

of the equations of motion. Is an example, consider the 

convective derivative dj/dt: 

dv   9v ,   _ 

In Cartesian (x,y) coordinates, it can be approximated by 

the centered differences 

e .-— |    = v fv (x+öx/2. y)-v (x-6x/2.y)]/ox + 0(ox ) 
Cart 

+ v [v (x.y+öy/ZJ-v^x, y-öy/2)]/6y+0(Ay ). 

In curvilinear coordinates, additional terns are present: 
dv j dv | 

« "£\ =e 'ffi   +n(r,v)Xv+U!(r,t)Xv+a(p.t)1 . -x dt      -x L dt  - - J Curv Cart 

These arise from the acceleration experienced by a fluid 

element following a coordinate line. Here the g'a are unit 

vectors in the indicated directions. The effect of 

coordinate curvature is given by the Oxv term; the last t«o 

terms are present only «hen the coordinates are explicitly 

time-dependent. Terms such as these «ill appear «herever 

the equations of motion apply a differential operator to a 

vector quantity. Thus curvilinear coordinates have the 

drawback that differential operators take • more complicated 

form. 
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Curvilinear coordinates have the advantage of freedom 

of choice: once a curvilinear coordinate system is admitted, 

it can he chosen to fit the boundaries and to minimize the 

effect of special cases, such as curvature of the bonndarf 

or the origin of a cylindrical coordinate system. One can 

also put sore nesh points where they are needed: «here the 

physical behavior shows more detail, or where velocities are 

larger. 

In lov-0 problems, the geometry of a curvilinear 

coordinate systea is usually dictated by the magnetic 

field, when containment of plasma is desired, it is helpful 

to have a magnetic field geometry wit« magnetic surfaces, 

surfaces everywhere tangent to the magnetic field. Plasma 

confinement times can be expressed most readily in terms of 

mass flui through a magnetic surface, divided by the total 

mass contained by it. 

In general, magnetic surfaces need not exist, but they 

are present when the hydronagnetic fluid equations, 

JXB«Vp, 

J * V X B . 

J.B« 0 . 

are satisfied (Kruskal, Kulsrud, 1958). For problems with 

cylindrical or toroidal symmetry, the magnetic surfaces can 

be coordinate surfaces. The interesting geometries for 

containment are those in which the magnetic surfaces are 

nested; for closed magnetic surfaces, these must be 

toroids. For open geometries, fluid calculations often 

neglect end effects and apply periodic boundary conditions 

so that the model resembles one with closed surfaces. 
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II  COOBDXRATES 

He are now going to introduce three coordinate systems 

for geometries possesing Magnetic surfaces, starting with 

the most popular (and restricted) and ending with the most 

general. Each is a candidate for a numerical differencing 

grid. 

The first has been called the "toroidal slab model." 

It appears to be the simplest magnetic field model which 

permits realistic computation of plasma behavior in an 

azisymmetric torus. It is shown in Figure 1. (The usual 

cylindrical coordinate system is a special case, with B 

infinite.) The magnetic surfaces are circular, and the 

rotational transform (the pitch angle around the magnetic 

ails for a fi*»ld line going around the major axis once) is 

an arbitrary function of radius. This magnetic field has 

the advantage of simplicity, as ve shall see in detail 

later, but it has the drawback thatVXB is not zero.  That 

is, the current producing the transform is 
T    -wT»    Bo 8   rRf J  stTXB=e — — —  , 
ext  — — —z r 8r R-rcos0 

and in a low-0 model this current must be carried by 

imaginary "wires" immersed in the plasma. Hhen 

electrostatic, aiisymmetric systems are considered this 

current is ignorable, since B<J _**0, and it does not affect 

the dynairics. Th~- metric of this coordinate system is 

dl2 = dr2 + r2 dfl2 + (1 - ■£• cos 0 )2 dr2 , 

and the surface and volume elements can readily be obtained 

from this. 
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MAJOR AXIS 
OF TORUS 

Figure 1.  Ihe geometry c£ Pfirsch coordinates,  and the 
magnetic field expressed in these coordinates. 

This is the geometry Pfirsch and Schlüter (1962) 

introduced to study diffusion in a torus. Bineau (1967) 

believed the lack of self-consistency cast doubt on their 

result» but Johnson and von Goeler (1969) demonstrated that 

the essential results of Pfirsch and Schlüter were valid for 

a general vacuum field. This geometry therefore seems 

adequate for equilibrium or diffusion calculations with 

toroidal symmetry. 

The second coordinate system describes an axisymmetric 

vacuum field and is closely related to the magnetic flux. 

In the toroidal case, the field is separated into toroidal 

and poloidal components B =» B *B . The toroidal part B has 
-  -T-P t 

the usual 1/8 dependence relative to the major axis,, and the 

poloidal field can be described by a potential*, or by the 

magnetic flux the short way x » and *•>• angle 9 the long 

way.  Thus, 

B= RB,76+v* 

= RBTve + vex vx 
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i Toroidal field coil (TP) 
2 Poloidol field coil (PF) 
3 External field coils (EF) 
4 Horizontal probe 

Local sheor length 

2BPBT 

® 
IS] 

® 
^ 

V*-^A,BpR 

(a) 

figure  2.   Ihe machine diaqtam of a sph^rator, showinj the 
cross-sectional shape of magnetic surfaces. 

Here BB is a constant, and R is the distance from the major 
T 

axis to the field point (x.#. ©)• For purposes of 

computation, H(x.*, 0) is a coordinate function needed for 

the metric,        2      ? 

p    p 
The computationally useful quantities R and B determine the 

scale factors in it. 

These coordinates have proved useful in calculations of 

the magnetic field in a spherator (Figure 2 is a typical 
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example). They can describe a true vacuum field, as «ell as 

fields in the presence of currents, but azisymmetry is built 

in. The coordinate gradients are orthogonal, but the metric 

shows that they are not unitary. 

The thiiw curvilinear coordinate system was introduced 

by Hamada (1959). Its utility in analytic work has been 

demonstrated, for example, by Greene and Johnson (1962), and 

by Frieman (1970). It begins by parameterizing a (closed) 

magnetic surface by the volume, V, contained vithin it. 

Then, writing the fluxes the long way ty and the short way X 

as functions of V, one chooses the scalars | and £ such that 

where the primes indicate derivatives with respect to V. If 

we also require W«V|XV? = 1,the lines of constant | will 

close on themselves the long way, and | will be periodic, 

with period 1, the short way. Similarly, lines of constant 

£ will close on themselves the short way, and £ increases by 

1, once around the long way, Observe that the basis vectors 

are not in general orthogonal.  The metric is 

d«2= Y gijd«'d«j. 
i. j 

where { =v, £ *£, and £ =£.  Six scalars are needed to 

relate d< to coordinate displacements, since g *  is a 

symmetric tensor.  These scalars are the dot products of 

V| XVC. 7{ XVV and VVXV{, taken in pairs.   For numerical 

computations in these coordinates, it would be necessary to 

tabulate these quantities at each mesh point. 
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Magnetic field lines 

CONDUCTOR 

EXTERNAL 
WINDING 

PLASMA 

VACUUM 
VESSEL 

MAGNETIC 
SURFACES 

figure 3. Perspective view cf a spheratoL, showinq the 
variation in pitch of representative magnetic tirl.l 
lines. 
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In return for the complexity of the metric, one obtains 

a coordinate representation in which integrals and 

derivatives are easily computed. Furthermore, the magnetic 

field lines, and the lines of the generating current, are 

straight. This greatly simplifies calculations such as 

magnetic line integrals. Figure 3 shovs why straightening 

the magnetic field lines can be a big help; it shovs several 

field lines in a spherator geometry. 

These are the three coordinate systems. They are 

convenient, respectively, for simple calculations, for 

problems with axisymmetry, and for computations in a general 

magnetic field. They have been presented in their toroidal 

form for convenience. Bach can obviously be specialized to 

cylindrical geometry (R=<°). Spherator and Hamada 

coordinates can be applied to multipoles, with the 

separatrix as a special case.. Hamada coordinates can be 

applied to open-ended or mirror geometries, with V replaced 

by a suitable surface label. 
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III     »LGEBRA 

He will no« show ho« fluid calculations ace performed 

in these coordinates, and how to decide which is best suited 

to a particular proolem. He will illustrate these points 

through calculation of geometric factors in line, surface 

and volume integrals, the acceleration terms in the momentum 

equations, and the form of the conservation laws. 

First let us see what is involved in the computation of 

integrals. Physically, the quantities which are likely to 

be needed in the formulation of the equations or in the 

diagnostics are magnetic line integrals, magnetic surface 

integrals, and integrals of a volume bounded by magnetic 

surfaces. Magnetic line integrals occur in the evaluation 

of equations like Ohm*s lav, 

E + -vXB=rjJ . 

the parallel component of which yields 

B- V# = -7) B« J 

in the electrostatic limit E*-VA. They are also obtained by 

application of Stokes* theorem to Maxwell's equations. 

Magnetic surface integrals come from the divergence theorem, 

and from  formulations  of  conservation  laws;  e.g.. 
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consecration of charge, 

J • dS = 0 . 
j ««* 

In toroidal geometry such magnetic surface integrals are 

important in calculating the time evolution of the system 

(Uinsor, 1970; Bowers, this conference). Volume integrals 

appear in averages, diagnostics, etc. 

The cylindrical limit of Pfirsch coordinates is a 

convenient and familiar starting point for comparison of 

these expressions. The line, magnetic surface and volume 

elements are written 

d£ = e   dr+erdÖ+e   d 

dS = e rdfldz , —  «.r 
and 

dr = dr rdÖ dz . 

The effects of curvature are introduced through a single 

parameter H«1-r cosö/R, the ratio of axial lengths d£*Ndz at 

the field point (r,0,z) to the length at the magnetic axis 

df=dz. Thus, 

d£ = e dr+ e„ rd0 + e Ndz , 

e rdfl Ndz , 

dT = dr rdfi Ndz . 

in Pfirsch coordinates.  In spherator coordinates,  tne 
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Magnetic lin« and volume integrals  require  the  two 

additional functions described before: 

dl = e (dx/RB ) + e , (d*/B ) + « Rde . 
— «»x     p •»♦    p —o 

dSe e (R/B )d*de , 
-X    P 

d = (1/B2)dx d« d9 . 
T    p A 

The components in the line element are orthogonal. In 

Hamada coordinates, the line element can be «ritten 

di= dVV| XV? + d* V?XVV+d?VVXV| . 

The particular choice of metric elements simplifies the 

surface and volume elements: 

dS s VV d| d? , 

dT = dV d$ d? . 

Mote that B»/B_»x,/V/' is constant in these coordinates. 

The simplest means of numerically performing an 

integral is to set up a grid along coordinate lines, 

evaluate the line, surface or volume elements for the cells 

of the grid, and perform tbe appropriate sum, using the 

trapezoidal rule for points on the mesh and the midpoint 

rule for points displaced from it. In a coordinate system 

suited to the problem at hand, this is likely to be quite 

adeguate. thus, only the metric coefficients indicated 

above, and no additioncl weighting factors, are required. 
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any textbook on differential equations presents the 

gradient, divergence and carl operators in coordinates other 

than Cartesian, a quick glance at tkese expressions shows 

that eetric elements appear inside the derivatives in div 

and carl, but not inside grad. This is because div and curl 

operate on vectors, and grad operates on scalars. The dyad 

Vv^ is quite complicated in curvilinear coordinates, and will 

be discussed below in connection with the acceleration 

terms. 

The difference approximation to differential operators 

■ust be selected vita numerical stability in mind, but 

generally speaking, the simpler the better. The second 

programming example below illustrates a "centered" 

difference In spherical coordinate*; the coordinate la highly 

nonlinear, but the stability of the difference formulation 

is unaffected by this. 

If both integrals and derivatives appear in the 

expression of the problem, it is very important that the 

operators be compatible, i.e.. 

r d£.V*. d,-A 
1 

and 

I  dS«A*\v.AdT 

should be identically satisfied in  difference  form. 
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Integrals sack as these ace frequently derived fron 

conservation lavs« and it is good practice to insure that 

these lavs are obeyed by the difference foraulation of the 

problem, le shall say aore about these considerations 

shortly. 

The programming of differential equations in one of 

these coordinate systems involves replacement of the 

differential operators by suitable difference operators. 

Ho« great a task that «ill be depends both on the form of 

the opecators and on the choice of the diffecence 

approximations. The opecatocs ace presented in the next 

paragraph« to indicate the amount of uork that is required 

to code their. 

The form of the differential opecatocs in Pficsch and 

sphecatoc coordinate systems is ceadily calculated. In 

Pficsch coordinates, 

V*  -r 8r + Iß   r99     -* N8* ' 

^'"rNSr 

8rNA   8NA-   8 A 
 1  +  §  + _^L 

rN80   N8« 
8NA 8NA e (-8NA »A-, e/,r«A UNA -i e r0N/ 

I - N L r80 as J N L 8s »r J r L •* 

In spherator coordinates, 

Y^lxRBpH + I*Bpli+^le 

8A 

'-}. 

V • A =  B 
, 8BAV/B 
2 X     P 
p    8X p       8* R86    ' 

r      8RA       8A.  , r8Ax 
8RA

e1 2("8A* 

Z    m.    -XL  P R8*       R86 J   •♦LR86      p   »X   J   JB     PL   8X 

-8A./B      8AV/RB 

8* 
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In Haaada coordinates,    ve    are   again   in   need    of    tensor 

notation: 8A 

(VXA)i=I€ijkiTgk£Ai' 
jk*     J 

where derivatives of covariant quantities ace indicated. 

Here €...  is the usual antisymmetric tensoc. The operators 
lJ kl 

involve derivatives of the 9 , but the difference version 

still requires only these six parameters tabulated on the 

mesh. 

The dyad Vv usually appears only in the combination 

v.Vv# and for time-independent coordinates ve can vrite this 

as 

V'Vv« y   e.vV+OXv 
i 

The problem of calculating the acceleration is then reduced 

to the differencing of the scalar components (discussed in 

the section on convection) and the calculation ofQ. In 

Pfirsch coordinates« 
V        V 

0 , _Z e + _JL (e cot 0 + e ,lB$ jx e t 
•»    ■»£  nil  »r      **g «~z 

and in spherator coordinates, 

vfl        8R 8R /VX   8RBn 9Bp \ 
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Tli« expression in Mameda coordinates involves the curvature 

tensor, and is best tabulated in approximate Cora. Tke 

generalisation of 0 for tkis CUM is tko Ckristoffol symbol, 

with 18 independent components. 

Tko grid formulation of integrals and derivatives will 

rogair« tk« fanctionals in the «qaations of tkis section. 

Tkis deteraines kov «any arrays of paraaetera are needed on 

tke aeak. For a simple steady-state or eigenvalue proble« 

in two or tkree variables, tke Pfirsck geonetry vitk its two 

paraaeters f(r) and l(r,0) is appropriate« unless tke 

proble« is sensitive to tke details of the Magnetic field 

atEactare. for a simulation of transport processes vitk 10 

or IS variables, tke additional functions required to 

describe tke coordinate syste« »ill not add «nek to storage 

requirements, but tke additional calculation required in 

derivatives and integrals «ay add substantially to 

computation ti«e. Tke availability of computer tine may 

decide tke ckoiee between spkerator and aasada coordinates. 

Of course, tke additional compleiity and computation should 

provide a closer approximation to tho actual physics of the 

proble«. 
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IV  COft-SEPVmOR Z.AHS 

One of the most important reasons for using magnetic 

coordinates is the necessity to evaluate conservation lavs, 

either in the calculation of the fluid dynamics or in 

diagnostics. For example, conservation of mass, 

»fi- 
at V.pv , 

can be integrated over any volume. 

8t \ pdT = - *  pv.dS, 
"D       -'3D 

but we only obtain useful information about diffusion «hen 

the surface D is a magnetic surface. Velocities along the 

lines are typically an ord?r of magnitude large, than 

perpendicular  (guiding center)  velocities, so a small 

parallel component  passing  through  the  surface  of 

integration can completely mask the diffusive contribution 

to the flux. 

There is a  relatively  simple  prescription  for 

preserving such essential aspects of the physics: 

(1) use a coordinate system appropriate to the geometry 

of the problem, and 

(2) «rite the important parts of the eguations in 

conservation-Ian form. 
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Basically, (1) means that if the velocity is large in one 

direction and 3ualk in another, it is necessary to orient 

the coordinates so that these components are computed 

independently and the larger one does not "wash out" the 

smaller. Hext, one selects a finite difference mesh in 

these coordinates. Then (2) suggests that the divergence 

theorem should be applied, where possible, to the elementary 

cells of the mesh, so that the quantity of interest is 

conserved as it moves among the cells. 

Conservation of mass (or charge, or energy) may appear 

as a continuity equation, 

f? + 1'Pl " °> 
or a source term may be present an the right, accounting for 

Ionisation, charge exchange, etc. The difference 

formulation of this equation usually is used to evaluate the 

time rate of change of p at the center of a grid cell, given 

the flux pv at its faces. 

In a large fraction of the codes solving this equation, 

the computation sometimes encounters regions in which the 

mass tries to become negative. k "floor" is frequently 

provided by the programmer, limiting the density to zero or 

to ,'jvme small positive value. Such a heuristic rule must be 

applied with caution, however, if conservation is to be 

maintained.   The "lost" density must be compensated in the 
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adjacent cells. For farther observations on misuse of the 

conservation-lav techniques, see Horetti (1969b). 

The remarks about mass conservation apply also to 

momentum conservation, but it presents additional 

difficulties in a curvilinear coordinate system, because of 

its vector nature. specifically, when the equation is 

written out, the acceleration terms cannot in general be 

absorbed into perfect derivatives. The nonconservative 

contributions can often be included implicitly in the 

difference equations, but terms which involve spatial 

averages of quantities cannot be conveniently treated. 

The noirentum equations perpendicular to the magnetic 

field will involve the components of the JiB force. In 

low-/? systems there is no relation between the current and 

the magnetic field since the latter is assumed curl-free. 

Thus the JxB force cannot appear in conservative form and 

must be treated with care. In some applications (winsor, 

1970; Bowers, this conference) the perpendicular momentum 

equation is used to solve for the current. Then the 

perpendicular momentum must be obtained from Ohm's law, or 

some other equation. 
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f  B0DNDA8IES 

The simulation problems which relate to laboratory 

experiments, and many that are of astrophysical interest, 

require the treatment of boundaries. If vails are present 

in the specification of a hyperbolic problem, 

characteristics can be found which intersect the wall. The 

model must therefore determine what happens when plasma 

flows toward, along, or away from the wall. The correct 

treatment of boundaries can be extremely important, as in 

the gas-dynamic case of flow past an obstacle (floret ti, 

1970). Computations of drag and torque, for example, are 

critically dependent upon the treatment of boundary 

conditions. 

In the plasma case, the actual boundary layer 

(electrostatic sheath) is much too thin (a few Oebye 

lengths) to be modeled on the grid, so its effects must be 

included analytically in the computation of the grid cells 

adjacent to the boundary, treating the sheath as one face of 

the cell. 

In an open-ended geometry one must eithr-r treat the 

ends explicitly or ignore them by applying periodicity.  In 
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closed geometry« the boundaries can sometimes be avoided by 

solving a particular initial-value problem« either free 

expansion or expansion into a Ion-density plasma layer 

separating the bulk of the plasma from the wall. Experience 

has shown that the interior may then be veiy insensitive to 

the boundary conditions. 

Computations including the Hall terms in Ohm's law 

indicate that this buffer layer does not last as long as in 

the zero Larmor radius limit. Nevertheless« the inclusion 

of a low-density region near the wall has proved helpful in 

reducing the sensitivity of plasma calculations to initial 

and boundary conditions. 

Our experience with containment calculations has been 

that the boundary effects can be both important and 

difficult to treat; however« the main body of the plasma may 

be insensitive to them. One can study the bulk effects 

first, and bring in boundary effects later. 
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fl COIVECTXOI 

Convection is important along the magnetic field lines, 

since parallel velocities frequently are comparable to the 

sound speed. In addition, E/B drifts lead to convection 

across lines. (For a perfect conductor, g nay be considered 

to convect vita the fluid.) If the ion Larmor radius is 

comparable vita |Vln(n)f# the diamagnetic drift terms can 

also produce important convection. Be have found that for 

cases of physical interest, the E/B and diamagnetic drift 

velocities can enhance one another, leading to very sizable 

convection across B,. 

The calculation of vector components need not be along 

the basis vectors. For velocity calculations in which the 

component parallel to g is much larger than the 

perpendicular components, it is convenient to compute 

perpendicular and parallel components directly. For example 

the velocity can be decomposed into orthogonal components 

v=ve + v e. X e+v. e, , 
—   r—r   »«-b —r b—b 

and the v.Vv operator described above can be applied to these 

components. The problem of convection then becomes the 

problem of differencing the components of v. along some 

convenient set of coordinates,  in a manner which  is 
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numerically stable. 

This has a special importance in Hamada coordinates. 

If the covariant components of vectors are stored on the 

mesh, computation of a contra variant quantity such as (Vfj) 

normally requires computation of g and a sum to obtain the 

covariant components. Bovever, if the equations of motion 

have been «ritten so that only B«V0and Bity appear, they 

can be computed as ?Bj(V$)1 and JBjIV^V ( t»,and the 

covariant form of the metric tensor is not needed. 

One possible treatment of convection, characteristic 

integration, is provided by the Courant, Isaacson, Rees 

(1952) technique. Adapting it to curvilinear coordinates is 

accomplished by «citing the difference equations in the 

given coordinates (i.e., assuming that the fluid elements 

tend to folio« coordinate lines), and then adding an 

appropriate acceleration term, as indicated above. He have 

found that this method is satisfactory for a fine mesh and 

for velocities small compared vith the characteristic 

speeds. For computations in vhich convection plays a 

dominant role, the numerical viscosity introduced by it can 

mask the long-term behavior of the fluid. However for a 

discussion of its advantages in the treatment of shocks, see 

Horetti (1969a). 

If viscosity is present in the equations, the v.V v term 
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can be replaced by a centered difference (plus the usual 

acceleration tern) provided the treatment of the viscous 

tern — for example DuFort and Prankel (1953) — is such as 

to give stability to the coaplete system. For specialized 

problems in «hielt a single sweep through the mesh is 

performed, the angled-derivative method (Roberts, 1963) can 

give comparable accuracy without the stability problems of 

centered differences. 

The Lax-Hendroff (1960) method, as generalized in 

Bichtmver and Horton (1967), can be applied even «hen 

viscosity is not important. It possesses second-ordec 

accuracy and good stability properties. On the other hand, 

it reguires computation of intermediate quantities, which 

can nearly double the computation time, and it involves 

space averages «hich may affect local phenomena. 

An illustration of the importance of • proper treatment 

of convection is provided by the calculations reported 

elsewhere in this conference (Bowers). The calculations 

reported there, demonstrating shock structure in a toroidal 

plasma, were performed with a modified Lax-Vendroff 

technique. previous calculations vith less careful 

treatment of convection suffered *rom numerical damping of 

rotational modes. In any calculation in «hich steady flow 

is present, proper treatment of convection is essential. 
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Til  SIHBOLIC PROGKaHHIMG 

■• have spent a lot ot tine discussing coordinate 

system, and save not worried mack about the actual 

difference formulation of the equations. The treatment of 

difference equations, and the analysis of their stability is 

certainly well-known, at least in Cartesian coordinate 

systems. Re now wish to show how conventional difference 

schemes can be adapted to a general coordinate system. 

The proposed technique is a style of »citing programs, 

called symbolic programming (Boris and Roberts, this 

conference). He will use it now to illustrate the ease with 

which a difference scheme can be written in 

coordinate-independent form, and then used in different 

coordinate systems. The resulting programs are clear and 

easy to read, and the treatment of a complex geometry is 

reduced to looking up the differential operators in a 

mathematics textbook. 

The method is exactly that of analysis; one writes the 

equations in terms of differential operators, and then 

changes the definition of the operators to go from one 

coordinate system to another. Consider the scaled linear 

ware equations 

8v 
97 + Vp = 0, If + Y-1- °- 
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The simplest difference formulation of this problem    in    one 

dimension      (Courant,      Friedrichs,      Levy,    1928)    involves 

displacing the £ lattice    one    half-step    from    the    density 

lattice and using centered differences in space and time: 
t+1/2       t-l/2 t t . /x 

Vx+l/2= Vx+l/2-6tX<Px+r
Px,/6x> 

t+1/2        t+1/2 t+1        *     **~ , p       = p   - 6tX (v 
xx x+l/2-Vx.l/2)/ÖX 

This is the conservation-lav formulation of the problem. 

The key to using this effectively is to separate the 

phjsics fror the mathematics: write the assignment 

statements 

V(X)   :=• V(X)   -  DT * GftftD(F(X)) ; 

?(X)   :=  P(X)   -  DT *  DIYE (»(!)); 

and «rite the GRADient and DIVErgence functions to reproduce 

the preceding difference equations. Here P(X) and ?(X) are 

subscripted arrays, and these two statements must be 

executed at integral and half-integral times respectively. 

Figure H presents a program which implements these 

concepts. It is written in Stanford University's Algol H 

(rfirth, 1966). This program is complete with graphical 

output; only the sin function for initialization and the I/O 

routines are not shown. 

The box near the top contains the mathematics: the 

derivative operators.  Th« pressure and velocity mesh points 
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are indicated to the eight. The subscripts foe T are 1/2 less 

than tk« «als« of th« spatial grid position. ODI is the 

difference operator. GRaD, »kick sill be applied to P, is 

simply CCS. Olff mast be shifted back one step to 

difference tke correct elements in f. For tkose who are not 

familiar with Algol-like languages: a replacement is made of 

the formal parameter (I) in each procedure body by th« 

corresponding actual parameter (e.g.» P(J) J, so that 

changing X changes the value of T. 

The fcoi near th« bottom contains th« physics: the 

differential equations. Th« cod« sweeps through the mesh 

once for V and once for V at each time step. Th« pressure 

is graphed once every HP steps. This description of the 

problem is coordinate-independent; the geometry of the 

coordinate system is in the difference operators above. 

Figure 5 is the output of this program. Th« space 

coordinate is plotted vertically and time advances to the 

right. The initial conditions are p*1*sin(i) and v*0, and 

the boundary conditions are p*const, at the edges, so the 

plot can be visualized ma the amplitude of a vibrating 

string. The time step is 6t*6i, equal to the stability 

limit. The individual printed lines represent the pressure 

every second time step. Treating the boundaries as x*0 and 

**U,  the eiact solution is 

p= 1+ l/2{sin[2»(x + t)/Nj*»in[2jr(x-t)/N]} . 
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and tli« recurrence tin« is t«2». The tin« axis ranges fco« 

t*0 to t»21. 

This is a simple example in «kick the physics is 

transparent, and the mathematical treatment is the standard 

eiaaple of textbooks. The physical equations can be readily 

checked and debugged in tv« for«. The neit step in this 

approach is to select a coordinate system appropriate to tke 

problem of interest. acre «e skall select spherical 

coordinates as an example. Tke problem of interest can then 

be treated fcy changing tke torn of tke operators. 

Figur« 6 presents a prograa which solves tke sane «awe 

eguation, eitk tke sane initial and boundary conditions, bat 

in spheric«1 coordinates. lore I represents tke radial 

coordinate« and ranges fron s«lO to x*>0«a. Tke only 

ckanges are in tke upper box; the divergence operator bus 

been replaced by 

'  »  2 d»v * —r — x 
2 8x 

x 

divve[(x+^ |2v|«4^ ).(x.&.)v(x-^ )]/x26x + G(6x2). 

These ckanges ate exclusively in tke mathematics of the 

differential operators, «here tb«y belong.  Mot« that the 

details associated with the half-st<tp displacement of tke 

velocity mesh are also located here. The remainder of the 

prog rar is identical «ith the previous example. 

The output of this program is shown in figure 7. in 
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tllCiOL 

0001 
0002 
0001 
060» 
»OOS 
900* 
BOOT 
99C« 
903« 
0010 
0011 
0012 
0013 
001« 
0015 
0-11» 
0017 
0910 
001« 
0020 
3921 
3022 
3023 
302* 
9925 
3026 
0027 
002« 
932» 
3013 
3)31 
i012 
C931 
091» 
00 IS 
331* 
•,«17 
cm 
13!» 
10»? 
00» 1 
fl»2 
"•»•3 
"0»» 
■|3»S 
:?»& 
:o«7 
10»« 

riyure  « 
in 
dif 

«ret» imeu ■, to, IF, rui;    IBIL DI, PT; 
HMD   (I,   TUX,   01,   ST.   00,   IP|;     «RITE   («,   nil,   DI.   DT.  «0.   «P| ; 
•EtSIl 

■Zll PROCEDORE DEE     (IEIL  T) ; 
BEiill R!1L Z: 

I :•  1*1; Z :• I; 
l :■ 1-1: (i-ll/Ol 

ERD ODl; 

MIL PEdCEDOR! SR1D (1EIL 
ODI 

7»; 
(7); 

IEIL PIOCEDORP 
■E6I» 

1 :• 1-1; 
1 :« 1»1; 

£10 MIS; 

Dili (»Ml 
»Sll 
0 :» 
0 

K: 
o; 
001 (7): 

IITESEI I; 
IEIL Ulli  f.  f   (IO::li)fl|; 

PROCEDORE GR1PI   («Ell  l»FI7  »(•)): 
OEiil»  P3i  I   :• 9  0»TIL «  On 

II»E(I|1)   :•   UPLITOOt   (»O0ID|IB3<  7<l«»9  I   ))    I   1) ; 
IRXT; <Li«r): 

EID UUP*; 
StUlt   (U9|   «»PLITODE,   LI*'; 
AIPLITUB*   jt  «1   1   J   H  U  1«  1 H C  D  I F t I  I  J  77???????« 

FOR  I   :•   I)  OITIL  DO*»  DO 
■ESII F(l)   :■   19  •   (1*SI»(?*P!«(l-»0)/«)|;     »•»)   :■  9 r»P; 

FO»  I  :»   1  OITIL Till  DO 
•EGI« 

FO*   1   :»   "  OITIl  1-1   BO 
DESIl  I   :•  IC»I; 

tu*  I :■   1   UITU  1-1   DO 
bECt«  I   :»  li1»!; 

»dl   :»  »HI 

F(l|   :•  HI! 

DT •   SIID(P(I|I; 

DT •   DI»F(»(I)| ; 

E»T>; 

E«D; 

IF  T   «LI   »F   •   0   TIM   5F1PH   (F| ; 

END; 
EID; 
OKI   ("IE*   OF   •IICOTIOI.»! ; 

EID. 

.     I   pioqran wricl   solv«-r  tr*»   lin«*u     «avr     p-|<jitio?c 
Cjttcsian     coctiHnatF^,       ifc«>     iox^s    contain     tht 

fetcntial  operatoiF  ard  Mm   il.ysic.il  iiuations. 
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«»LCOl 

0001 
0002 
0003 
000« 
0005 
000« 
0007 
0003 
0009 
0010 
0011 
0312 
0013 
001* 
0015 
0016 
0017 
0018 
oon 
0320 
0021 
0022 
0021 
002» 
0025 
O026 
"•027 
"028 
002"» 
0030 
0031 
5032 
0:33 
0034 
0015 
0034 
0037 
0038 
00)9 
00»0 
3om 
00»2 
00*3 
SO«« 
30«5 
:i«6 
)»7 

-ri»i) 

'1*9 

BEGIB IRICEI N. 10, IP. TH»X;  RE»L DI, DT; 
REED (I, ?S»X. »X, DT, 10, DP);  »BITE (I, TIUX, DX, DT. «0, DP) ; 
BEGIB 

UU PBOCEDORI DDX  (BÄXL t); 
BEGIB REEL i; 

X s» X»1;        I :» T; 
X :• x-1;       (l-T)/PX 

EID [ill; 

BEXL PBOCBDORE GRID (BE»l 
DDX 

TI; 

IU1 PBOCEDOR« 
BEGIB 

X :« I-It 
X :» X»1; 

EBD SUE; 

DIVE 
REU 
D :« 
D / 

T); 
D; 
DDX 
X»»2 

(SHORT! T • (X»1/2) ««2 )): 

IRTEGER I; 
REEL ERRAT P. « (B0::B0»N); 

PROCEDURE GRkPH (REEL »RREY !(•>); 
BEGIB PO! X :• 0 OBTIL B DO 

LIBE(X|1) :• »BPLITODE (ROURD(»BS( T(X«K0 ) )) 11); 
»BITE (LINE); 

EBD GRlPtl; 
STRIBG   (130)   »RPLITOOr,   LIBS; 
iSPilTHöE   :«"0   123«56789XBCDEPGHIJ  ??m???T"; 

POS   X   :•   NO   UBTIL   N0»B  00 
BEGIN P1X)   :*  10 •   (1»SIB(2«PI«(X-B0)/»)):    »(XI   :•  0 END; 

POR r :• i OBTIL mx DO 
BEGIB 

roR I   :>  0 UBTIL B-1 DO 
BEGIN  I   :•  N0«I; 

POR  I   :•   1  UBTIL B-1  CO 
B'GIN  X   :«  »0*1; 

T(X) :■ »(X) - DT • GP»D(P(I)) ; 

P(X) ;» P(X) - DT • Dt»E(»(X)) ; END; 

IP I Rj.» NP • 0 THEN GRAPH (P); 

«ND; 
END; 
»RITE (»ENO OP EXECUTION.»); 

END. 

ti<juct> 6. A jrograrr which solves tho linear WSVP equation 
in spherical coordinates. The boxes contain the 
iiif feiert ial Operators ani th* physical equations. 
Kote the to-rm cf the <iiv*>rqence operator DtV"; it is 
the crly change from «iguic u. 
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tkia case the exact solution is 

p= l+{(x + t)ain[2f(x + t)/N] + (x-t)ain[2»(x-t)/N]}x-^- . 

Th« output is again plotted for on« recurrence tin«. The 

■or« complicated structure of the solutions is due to the 

fact that the sin(x) initial pressure distribution is not a 

solution of V'p'P in these coordinates, so the tine 

dependence is not separable. The symmetry of the graph is 

due to the special choice of boundary conditions and the 

constant characteristics of the differential equations. 

The point of these demonstrations is that symbolic 

programming technigues »How the separation of simulation 

problems in hairy geometries into 

(1) an invariant expression of the differential (and/or 

integral) equations representing the physics, and 

(2) a  mathematical expression of the operators, 

including all th« details of the coordinate system. 

The first part can essentially be copied from a physics 

textbook, while the second can be obtained from Chapter 5 of 

Börse and Peshback (1953) or some other appropriate source 

of mathematical detail. 
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fill  TINB-D3PCIDEIT COORDXVATSS 

le have not yet «ad« any reference to the problem of a 

tine-dependent Magnetic field, actually teat problem is n 

as difficult as it might seen. In magnetic coordinates, the 

plasma is stack to the coordinate lines, to lowest order, 

and the most important feature of the calculation is the 

explicit tine dependence of the metrics. 

Looking again at the acceleration, «e examine the 

additional terms due to the acceleration of the coordinate 

system. Using unitary basis vectors, 

— + vVv» / e. v • V v. + 0 X v  +  w X v + a. 
0t   «■*  «■*«■"•   £_ «■»»«■ft  «■»  1   «ft   — «■»   «aft  Mft 

1 
These additional terms can be made small by keeping the time 

variation slov. Computationally, the metric elements are 

made to change slovly in time, so that their explicit time 

derivatives are negligibly small compared to other terms in 

the equations of motion. 

This is hov the proposed adiabatic toroidal compressor 

experiment at Princeton can be simulated. Figure B shows 

how the magnetic field is expected to change over a period 

of milliseconds (Johnson, Greene, Heiner, 1970). The 

heating and inductive effects can then be studied. The 

effect of the plasma on the field can be examined to lowest 

\ 
\ 
S 
\ 
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figure P. Bagnetic surfaces and pressure distribution in i 
tckomak coirnrecsion exreriiren». Compression of tho 
iragretic field trcr the solid configuration to the 
broker, one causes a corresponding increAse i.i pl&iRM 
pressure. 
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order by allowing the coapated plasma current to slowly 

modify tko fiold. In magnetic coordinates, flax 

conservation ia bailt into tko calculation. Equations 

written in conaotvation fora in terms of tko 

(tine-dependent) geometrical factora aill remain invariant. 

Ikoco aceolocationa of eoocdinato voctore aro involved, tko 

not offoct of tko notion must bo axaainod. For estaple tko 

coaproaaion of a plaaaa ring with atorod angalar momentum 

akoald not change its total angalar nonentum. Thus, eran if 

the wiv tora ia nagligibla coaparad vita otkor toroa in tko 
MO mm 

diffacanea equations, the net effect aaat be included (foe 

exanple by the addition of an average öv to each element of 

the velocity) to conserve angalar nonentam. 

Siailar techniques can be applied to low-frequency 

studies of a self-consistent magnetic field problem. The 

field can b« changed slowly to reflect changes in the plasaa 

current, la eaphasise slowly, to avoid propagation of waves 

at the »If»en apeed. Physically, unmodified «Ifvon nodes 

involve too short a time scale to make simulation of 

laboratory plasmas practical. On the other hand, the 

longer-term effects of a self-consistent magnetic field seen 

readily accessible to this technique. 
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»III   sgiiiii 

In tke low-0 problem of plan» physic», th« magnetic 

field geometry usually controls tk« plann« dynanics. Tk« 

components of current and velocity, parallel and 

perpendicular to tke magnetic field, nay be very different 

in nagcitade. Thus it is important to choose a coordinate 

system «kick takes note of tkese differences, and allows tke 

•guations of motion to be expressed naturally. 

Tke available coordinates range in complexity from a 

simple Cartesian system to general curvilinear ones. Tke 

best coordinate system for a given problem represents a 

compromise between physics and geometry. Difference 

algorithms are more easily expressed, and integrals and 

derivatives take simpler forms, in Cartesian coordinates. 

On the other hand, the physical equations, and important 

diagnostics such as the flux thorugh a magnetic surface, are 

mure conveniently written in magnetic coordinates. 

Three coordinate systems hate been introduced: Pfirsch, 

spherator and Ramada. These systums demonstrate tke 

trade-off between generality and complexity. The treatment 

of integrals, derivatives, and acceleration has been 

discussed for tkese coordinates. 

The importance of tke correct choice of coordinate 

system was further illustrated by evaluation of conservation 

laws in then. The "conservation-law form" of the equations 
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of Motion »a» recommended. Son« remarks of a practical 

natnco regarding boundaries followed, and several methods 

for treating convection «ere discussed. 

The "symbolic programming" style was introduced as a 

systematic scans of reducing a general low-0 problem to a 

numerical code. It «as applied to tue familiar linear wave 

equation, to demonstrate tue ease of changing coordinate 

systems in the "symbolic" form. Solutions in linear and 

spherical geometry «ere exhibited. 

As an example of the utility of general coordinates, 

the case of time-dependent coordinates «as considered. A 

proposed simulation of the Princeton "tokopressor" «as 

described to demonstrate these advantages. 
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Abstract 

A modification of the standard simulation codes is proposed, 

in which each simulation particle is Interpreted as an element 

of phase space, with the value of the distribution function at- 

tached. For a colllsionless plasma, this value Is constant for 

each particle; when collisions are present, this value is modi- 

fied according to the collision operator. In this paper, one- 

dimensional problems are considered, and the Krook model opera- 

tor Is used for the collisions. Results are obtained for shock 

wave formation in a rarefied neutral gas, and for collisional 

damping of the two-stream instability in a plasma. 

Introduction 

This paper describes an extension of the well-known particle- 

in-cell or cloud-in-cell colllsionless codes (see e.g. Refs. 1, 

2,  3) in one dimension to collisional plasmas. The procedure 

differs from the collisional code of Oliphant and Nielsen in 

that we do not use a Monte-Carlo simulation of the collision 
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process, but operate directly on the distribution function as 

given by kinetic theory (Boltzmann operator, Poklcer-Planck oper- 

ator, Krook model, etc.). This method has previously been used 

for rarefied neutral gases with success^ , and the present paper 

Is an extension of that work to Include self-consistent electric 

fields In plasmas. 

The essence of our method Is the following:  Each simula- 

tion particle is to be interpreted not as a physical particle, 

or a fixed number of physical particles, but as a portion of the 

x-v phase space, and each will be assigned a weight representing 

the distribution function . Collisions are handled by changing 

the values of this weight function, in accordance with the colli- 

sion operator.  In this manner, the value of the distribution 

function attached to each simulation particle (or the number of 

physical particles represented by it) is changed continuously, 

and the high statistical fluctuation Introduced by Monte-Carlo 

methods is avoided. Thus, we expect relatively smooth and 

accurate solutions with a relatively small number of simulation 

particles. This scheme also ha3 an advantage in purely collision- 

less problems, in that a given velocity distribution can be repre- 

sented by fewer- or better distributed, simulation particles. 

In the next section, we describe the procedure in detail 

for one-dimensional plasma problems, in which the collision 

operator is the K"Ook model operator. This is followed by some 

representative results from rarefied neutral gas problems, in 

particular, the formation of shock waves in the piston prob- 

lem and in the rtlemann problem (initial pressure discontinuity 

or shock tube problem).  In the last section, typical results 
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are presented for the damping of a two-stream instability in 

plasmar. by collisions. 

General Procedure. 

Por definlteness, we restrict ou:? attention to problems in 

one space dimension, in which the plasma is represented by a 

single charged species, say electrons, and a neutralizing back- 

ground of constant density n,. The collision: are given by a 

Krook collision operator', i.e., the number of particles scat- 

tered out of an element of the phase space is given by the pro- 

duct of a collision frequency and the difference between the 

distribution function and the local Maxweilian distribution. 

The distribution function is a function of 5 arguments, f = 

f(x,t, v_,v„,v ), and the equation governing it is 
A  jr  Z 

2fc + „  *   + Six J£ 
at   * *   m  8vx 

4 ire (n - nj 

v (P - f) (1) 

(2) 

There are no other terms on the left side of (1), because 

in one-dimensional problems, there are neither y- and z-deriva- 

tives nor Ey and E^ components. The local Maxweilian distri- 

bution F is defined in terms of the three moments of f: 

the density n, the macroscopic velocity ux (uy = uz = 0 if 

they were so initially), and the temperature T. The collision 

frequency v can be taken as constant, or as given function of 

n and T; in more sophisticated Krook models, it can also be 

taken as a function of the molecular velocities, but we shall 

not do that here. 
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p 
As is well known , the absence of   y-, z-, vv-, and    v-- 

derivatives on the left side of (1) allows us to introduce two 

reduced distributions 

g - g(x,t,vx) = JJ f dvydv2 

r? (3) 
h = h(x,t,vx) = jM (vy

2+ v2
2)f dvydvz . 

Each of these two functions satisfies a kinetic equation of 

exactly the same form as (1), with the corresponding reduced 

Maxwellian distributions G and H on the right side. The 

coupling occurs through the three moments thus: 

P 
n(x,t) = .U g dvx 

r 
n ux(x,t) = J^ gvx dvx (H) 

(3/2) nkT (x,t) - [m   (1/2) mvx
2 g dvx + J. (l/2)mh dvx 

In ref. 8, equation (l) for a neutral gas (no E^, no eq. (2)) 

was solved by a finite difference procedure, and in ref. 5, it 

was solved by the present procedure. We now describe the 

modified particle-in-cell (or cloud-in-cell) procedure for a 

plasma. 

The left side of (l), together with (2), is the usual 

Vlasov-Poisson system. We treat it by the standard particle- 

in-cell (or cloud-in-cell) method ''*, complete with charge 

sharing, except that each simulation particle now represents a 

portion of the x-vx phase space, and it is assigned a function 

value of g and a function value of h initially. If the plasma 

is colliaionless, then (l) insures that the values of g and h 
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would be preserved, and each particle would keep Its Initial 

values of g and h for all time. With collisions, these 

values are changed at each time step by amounts proportional to 

the difference between the value and the corresponling Maxwellian 

value. The local Maxwellian value is completely at ermined by 

the moments of g and h in accordance with (4). 

Two finer points should be raised. The first is that the 

moments n, ux, T are calculated by integration at grid boun- 

daries, and not at the instantaneous particle locations. This 

is exactly analogous to calculating the charge density at grid 

boundaries in standard collisionless codes, using area weighing 

or inverse linear interpolation. In order to get the values of 

the Maxwellian distributions G and H at each particle loca- 

tion, we must first interpolate for the values of n, ux, and 

T at that particular location. This is analogous to the treat- 

ment of the electric field in standard collisionless codes. 

The second point refers to the interpretation of the 

distribution function g(v) or h(v) from the calculated 

results. In standard collisionless codes, each simulation par- 

ticle represents an equal number of actual particles, and the 

velocity distribution is represented by the varying number of 

simulation particles in various regions of the velocity space. 

In contrast, we use initially equally spaced velocity intervals, 

so that each simulation particle represents an equal volume of 

phase space, and the number of particles it represents is propor- 

tional to the distribution function. For neutral gas problems, 

these velocity intervals never change, and at any time, the dis- 

tribution at any position x can be read off directly from the 

values of g. In the charged particle case, however, the elec- 
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trie field alters these velocity intervals significantly from the 

equal initial spacings, so that the distribution function g(v) 

{and h(v)) cannot be read off directly; not only does it depend 

on the value attached to each particle, but it also depends on 

how closely the simulation particles are spaced. Thus, whenever 

the actual distribution function g(x,v) is needed explicitly, 

we must assign the weights attached to each particle to the 

appropriate grid points in phase space, using again area weighing 

or inverse linear interpolation. This is not needed in the cal- 

culations, but only in presenting the results at specified time 

steps or at the end of the calculation. 

Examples from Neutral Gas Calculations. 

In this section, we give two examples of calculations 

made with this modified particle-in-cell procedure, showing 

the formation of shock waves in a rarefied neutral gas. These 

examples are taken from ref. 5. The code is identical to that 

described in the previous section, except that the Polsson 

equation and the electric field are absent. 

In the first example (fig. 1(a) and (b)), the shoe*- is 

formed by a uniformly moving piston into a gas. The excess den- 

sity (i.e., the difference between the density and the initial 

density) is plotted against distance at various time. Time is 

nondimensionallzed to the Initial collision time (vjy )» length 

to the initial mean free path. In fig. 1(a), the piston speed 
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is small (10$ of sound speed), and we would expect good agreement 

with linearized theory, here shown in dotted lines 9. in fig. 

1(b), the same is shown for a higher speed piston. 

Fig. 2 shows a shock wave produced in a conventional shock 

tube, in which a diaphragm is ruptured at t = 0 (the classical 

Riemann problem). Again, density is plotted against position at 

various instants of time. The initial motion of the gas is free 

flow, and between 10-15 collision times, a well-formed shock 

appears. The various uniform regions are separated by a constant 

width shock at the extreme right, a contact surface diffusing as 

the square root of time, and an expansion wave spreading linearly 

in time. These results agree with classical fluid dynamics, and 

also with the computed results of ref. 8. 

ColliBional Damping of the Two-Stream Instability 

!; 

To test our method, we study the effect of collisions on 

the electron two-stream instability, by now a standard test for 

all simulation codes. It is recognized (cf. Morse and Nielsen ) 

that a one-dimensional two-stream calculation does not adequately 

portray real physics, as a two- or three-dimensional calculation 

gives qualitatively different results. Nevertheless, we feel 

it is instructive to test our method on this probl« n in one 

dimension, as it is much simpler, and there are numerous colli- 

sionless calculations to compare our results with. 
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We use 20,000 simulation particles for the electrons, 

corresponding to 200 x-point3 and 100 v-points.  A x is chosen 

= 0.5 XQ, and A v = 0.141 v... The drift velocity of the two 

streams are +2 V|-n and - 2w^. , and each stream has an initial 

Gaussian velocity spread. The total length of the configuration 

is 100 Debye lengths, and the problem is periodic in x, as usual. 

The time step is 0.04 t» , and we generally run 600 steps or 

24 plasma periods. Round-off errors provide the initial pertur- 

bations. 

Our parameters are essentially the same a3 used by Morse 

and Nielsen , and we also have n-3 as the most unstable mode. 

The first saturation in field energy corresponds to the formation 

of three vortices in phase space. Pig. 3 shows the evolution 

of the total field energy as a function of time, for collision 

frequencies v - 0, .Oltr , and .03a1 _ respectively. The total 

duration of the runs were. 600 steps in the first two cas "s, and 

500 steps for the last case, corresponding to 24 and 20 plasma 

periods respectively, and also to 0.24 and 0.60 of a colli. ion 

time in the latter two cases. 

The subsequent peaks in field energy correspond to the 

coalescing and oscillation of the vortices, as described in 

detail by Berk and Roberts , who chose a smaller length and 

started off with two vortices as against our three. Our phase 

plane plots of the distribution function, and the energy corres- 

ponding to various spatial Fourier modes, all agree with their 

description; we shall not repeat these arguments here. 
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*/*K 
Fig. 4. Cumulative velocity distributions for collisionless 

and colliaional two-stream instabilities at two 
different instants. 
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The effect of the collisions on the evolution of the field 

energy is quite obvious. First, it decreases the growth rate 

of the instability, and generally slows down the entire process. 

Second, it reduces the amplitudes of the various peaks of the 

electrostatic energy. What may not be expected, however, is 

seen in fig. 4, in which the cumulative velocity distribution 
m 

over all space (g (v)= J  g dx, which is identical to P (v) 

in ref. 10) is shown at two different instants for v  = 0 and 

.03. The collisionless case is seen to fill the center hole 

of the cumulative velocity distribution faster than in the slightly 

collisional case! The explanation for that is that the filling 

process is mainly phase mixing, which depends on the electric 

field, and for small collisions, the dominant effect of the colll- 

isions is the reduction of this electric field. Of course, at 

high collision frequencies, the filling will be increased over 

the collisionless case. 

On the other hand, if we examine the local velocity distribu- 

tion rather than the cumulative distributions as expected. Fig. 3 

shows the distribution functions plotted in x-v space for u = 0 

and .03 ID, at their respective first saturation. It is evident 

that the slight collisions have greatly smoothened the distribution 

at each x-position, which is precisely the cause of the decrease in 

the amplitudes of the electrostatic energy oscillations. Fig. 6 

shows the same distribution at the respective second saturation 

peaks, and fig. 7 shows them at long times (t= 2k  w _1 for the 
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collisionless case. 20 tu ~1 for the collisional case). At this 
P ' 

stage, the collisional case is essentially uniform in x already, 

although it is not yet Maxwellianized. 
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INTRODUCTION 

A very general method for solving numerically two- 

dimensional, two-fluid magnetohydrodynamic equations is being 

developed.  The method uses second order accurate, alternating 

direction implicit finite difference equations.  The accuracy 

and implicitness of the codes which have been developed using 

the method are features not available in previously reported 

codes.  The equations which are solved by the codes are 

written in vector form as 

|£ + v'Vp + p7*v =» 0 
3t (1) 

12 + v-w+iv[p(e. + en + -2- x (v x B) = o   (2) 

30 (8."0 5 
^ + v-vei + it - i)ei7-v - i v(Kl7ei) +  | e - o 

EQ 

(3) 
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3fl (8. - 9 ) 
-j| + v-vee + {y - i)eevv - i v-(Kevee) +  * T„ 

e 

EQ 

Jl. M-  n(V x B)2 = 0 (4) 
PWr 

SR   —  —   —   — 
|| + vVB + B(V'V) B-7v + —V x (T)7 x B) =0 (5) 

where K. and K are the ion and electron thermal conductivities, l     e 
n the resistivity, T_0 the equipartition time, p is the density, 

v the fluid, or average, velocity, 8. and 9 the ion and elec- 

tron temperatures, and B the magnetic field. The equations are 

solved in cylindrical coordinates with axial symmetry, so that 

no variation in the azimuthal direction occurs. 

Denoting Ü as a nine-component vector whose components are 

dependent variables and K as a four-component vector whose 

components are the transport coefficients, each a function of 

Ü, so that 

u (P, <rr,  v., v,, 8,, 8 . B . B., B,) (6) 

and 

K = K(U) (Ki' Ke' 1/TEQ' n) (7) 

the equations (1) through (5) can be written in cylindrical 

cooidinates with axial symmetry as 

3Ü . sr , IT »I 3Ü  32U  32Ü 7 3K  3K .   ft 

3r   3z 
(8) 

where T is a nine-component nonlinear, coupled vector function 

of the arguments indicated. The alternating direction implicit 

finite difference approximations to equation (8) have on one 

time step the form 
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and on the following time step 

*>i3-£S * (i'«;:)1^"« - «■»ss-'Cj-i • *•;:><>« 
In equations (9) and (10) A, I', §, §', 5, and 5'are 9x9 

matrices, V and V' are nine-component vectors, and the super- 

script n and subscripts i and j refer to the space-time point 

(tn, r., z,). The difference equations (9) and (10) are 

"tridiagonal" in the implicit quantities and are solved by a 

generalization to vector equations of the method given by 
2 

Richtmyer and Norton for scalar equations. 

Tokamak and Levitron geometries involve all three com- 

ponents of the fluid velocity and magnetic field. The computer 

codes written to calculate all nine dependent variables given 

in (6) are also set up to calculate several subsets of the nine. 

The subsets are 

Ü » (p, vr, «i, 0e, B2) (11) 

applicable to one-dimensional theta pinches, 

Ü -   (p,  vr,  0i,  0e, B^,  B2) (12) 

applicable to one-dimensional stabilized z pinches, and 

Ü - (P, vr, v2, er «e, Br, Bz) (13) 

appropriate for two-diuensional theta-pinch geometries and lasei 

produced plasma expansion studies. For one-dimensional calcula- 

tions, of course, I' and C' of equation (10) are zero and the 

calculations are performed for only one value of j. 
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For a uniform space mesh with equal increments Ar in 

the radial direction and equal increments Az in the axial 

2 
direction, the truncation error e (as defined by Richtmyer ) 

of each of the difference equations (9) and (10) is 

rigorously 

e = o[At] + o[(Ar)2] + o[(Az)2] (14) 

and, when (9) and (10) are combined, the over-all two-step 

truncation error is 

e = o[(At)2] + o[(Ar)2] + o[(Az)2] (15) 

so that the finite difference equations are second order in the 

same spirit as the Peaceman-Rachford equations for a simple 

diffusion equation. The second order accuracy (15) means 

essentially that a degree of implicitness is given to the 

transport coefficients and the coefficients of all spatial 

derivatives in equation (8). 

FINITE DIFFERENCE METHOD — FIRST TIME STEP 

The finite difference equations (9) and (10) are derived 

by dividing the components of the vector T into two separate 

parts, one involving all radial derivatives and one involving 

all axial derivatives. Thus the ß component of T is written 

as 

7e,n 3u a2u t (U, —,  y 
3r 3r* 

, K. 2E ) 
3r 

f tu, aa, q(i,J£i   tie) 
3z  3z     3z 
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where ¥^ and <r  are nonlinear vector functions of the argu- 

ments indicated;  in general,  the number of components of 
ß ft 

7 and g1^ will depend on 6. 

On the first time step (corresponaing to (9)) r* is 

—6 —ft 
treated implicitly and g^ explicitly. Because r is a non- 

linear function, it is linearized in the implicit quantities. 

After the linearization T has the form 

+(c>" •(%;- <v)n 

where a, 5, and c are 9x9 matrices with elements 

(17) 

3fF 3fö  3Kv 

*6u 

Bet 

'ßa 

M r  e .  £  . 
9e l 3Ua  3KY  3Ua 

3fk 

»ITT) 

2 
3^KY 

3U 3r 

-5?' 

•5' 
3f 3f 

-» a» 
3KY ^ 3U_ 

--v— 
3( y) 

3r 

and 7 is a vector with nine components 

3U_ 

(18) 

(19) 

(20) 

'ß 
gß f6 + a0 U + b0 ^e e   ßa a   ßa 

2 
3*U 

+ c 
3r ßa 3r 

(21) 

In equations (18) through (21) the superscript n and subscripts 

i and j are expressly implied for all quantities, and the 
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repeated subscripts y  and e indicate a summation over all 

components of the subscripted vectors, but no summation is 

indicated by the repeated superscript ($. The final differ- 

ence equation (9) results from using the standard one-sided 

finite difference approximation to the time derivative in 

(8) and the standard space-centered finite difference approxi- 

mation to all spatial derivatives in (17) through (21). The 

matrices A, §, and S of (9) are then given by 

*ßa 
+ «ßa + <&r+ " 

Ar-> u      2 
ßa '  At 

Ar 

Ar+Ar_ 'ßa Ar+Ar_ 'ßo 

Bßo " Ar+(Ar_+Ar+) 
bßa + Ar+(Ar_+Ar+) 

cßa 

Ar+ 2 
Cßo * Ar_(Ar_+Ar+) 

bßa " Ar_(Ar_+Ar+) 
cßa 

and the vector v is given by 

vß - 4P+ vß • 

(22) 

(23) 

(24) 

(25) 

In equations (22) through (?5) the superscript n and subscripts 

i and j are expressly implied.  The "Kronecker delta" 6 

appears in (22) and (25). 

ßa 

FINITE DIFFERENCE METHOD SECOND TIME STEP 

On the second time step (corresponding to (10)), g 

(16) is treated implicitly and 1* is treated explicitly. The 

procedure for deriving the final difference equation (10) 

is analogous to that for deriving (9). Thus, the matrices 

X', §', and 5' of (10) are given by 
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ßa (Az+ - Az_) 
Aßa " W It + Sz^S ßa      Az+Az_    ßa 

Az 
Bßo " Az+(Az_+Az+)   bßa + Az+(Az_+Az+)   cßo 

Az+ , 2 
Cßa * Az_(Az_+Az+)   bßa " Az_(Az_+Az+)   cßa 

and the vector v'  is given by 

V« =  got a + v* Vß    At   Vß . 

(26) 

(27) 

(28) 

(29) 

Analogous to (18) through (21), the matrices a', 5', and c' and 

the vector v' appearing in (26) through (29) are given by 

-ßa 

pa   c 

3g*   3g& 3K     3g*   32K 
xe l 3U   3K 3U     3K  3U 3z J 

3g 
ß 3g ß 

3U      3K 
3(-3T>     <-£> 

3<-3t> 
3K 

3U. 

3zz 

.ß *ß 
du 

vß - - »J 'S + Sa üa + bßa T» + c' 
32ü. 

3z' 

(30) 

(31) 

(32) 

(33) 

In equations (26) through (33) the superscript n + 1 and the 

subscripts i and j are expressly implied for all quantities, 

and the repeated subscripts a, y,  and e indicate a summation. 

TRUNCATION ERROR 

The first order truncation error indicated in (14) is a 

result of using one-sided time differences for the time deri- 

—ft 
vative in (8) and from treating g explicitly on the first 
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time step and implicitly on the second time step, i.e., gr 

is evaluated at t and t  , rather than twice successively 

at tn . However, when (9) and (10) are used alternately 

the o[At] truncation errors cancel. For a nonuniform mesh, 

the spatial truncation error for terms involving second 

spatial derivatives is actually o[Ar] + o[Az] because of 

the use of the standard three point finite difference approxi- 

mation, but, for a uniform mesh, the truncation error has the 

form given in (14) and (15). 

AN ELEMENTARY EXAMPLE 

For a simple two-dimensional diffusion equation 

3U  „ , 32U . 32U .   - K  (  y +  y ) 
3t      3r   3z 

3K DU _ 3K 3U _ - 
3x ITr " 3z 3z (34) 

the vectors 7  and g corresponding to equation (16) are 

I 

and 

? - ( -K, 

, 32U „  3K 3U  .. ( —y# K, , 1) 
3r*    3r 3r 

(36) 

2 
3 U 
3z' 

3K 3U , 
3z 3z ' (36) 

The calculation of the matrices and vectors corresponding to 

equations (18) through (21) and equations (30) through (33) 

and the calculation of the final difference equations corres- 

ponding to (9) and (10) is straightforward.  For the very 

simple case when K is independent of U, r, and z, and for a 

uniform mesh, the complete difference equations are 
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_1 +  2K  , jjn+1 _  K  ön+l __ 

At  (Ar)2   i,j   (Ar)2 i+1'j   (Ar) 

n+1 
7 üi-l»j 

Un . 
= -til + -JL, (u

n    _ 2U
n . + Un . .) 

At    (Az) 7 *"i,j+l  "i,j 
T ui,j-l' 

and 

1 A 2K  , „n+2    K  Itn+2 [ — + 
At   (Az) 

] o*; 07 I, 
K  yn+2 

T J ui.j * TZ^- ui.l+i " 7^7? ui.J-i (Az)' (Az)' 

= -iil + —2-^5- (0"T* - 20VT4 + U""t -i) 
At 

—^ (Un+1 - 2Un+* + Un+* ., 
(Ar)2  i+1'3   1,J   i-1'3 

which are merely the Peaceman and Rachford equations. 

CONCLUSION 

The alternating direction implicit method presented above 

is novel in that all factors in all terms, not just the spatial 

derivativ-: z,  are treated implicitly at one time step or the 

other.  It must be mentioned, however, that there is a degree 

of arbitrariness in the determination of the vectors r^ and 
P 

g of (16), and experience has shown that how the vectors are 

selected can affect the performance of the codes. The method 

described in this paper requires that all r and z derivatives 

be written out completely so that the different'al equations 

do indeed have the functional form given in (8).  Experience 

has shown that there are some computational advantages if the 

differential equations are written as "conservatively" as 

possible and differenced in the conservative form. The codes 
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developed to date solve the equations both in the form (8) and 

a conservative form. The conservative equations are somewhat 

more difficult to handle, but the method used, to be reported 

at a later date, is a generalization of that presented above 

and the final difference equations are identical in form t« 

equations (9) and (10). The method f<~>r deriving the finite 

difference equations (9) and (10) has also been used to solve 

the equations corresponding to (6) and (13) with the radial 

and axial magnetic field components B and B replaced by a 

stream function f, which is the azimuthal component of the 

vector potential multiplied by the radius r. The differential 

equations solved have the same form as equation (8). The 

method is quite general and may actually be applicable to more 

sets of differential equations than the MHD equations for which 

it has actually been implemented. 

It is difficult to assess at this time the extent of the 

advantages of the alternating direction implicit MHD calcula- 

tions over the several explicit schemes reported with respect 

to enhanced numerical stability.  Our calculations performed 

to date indicate numerical stability for time steps several 

times larger than would be allowed with an explicit method, 

but the maximum allowable time step has not yet been fully 

determined. It is expected that the implicitness and second 

order accuracy of the method presented above will allow calcu- 

lations covering a longer real time than is presently feasible 
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with explicit methods. With the advent of the new generation 

of computers it is certain that alternating direction implicit 

calculations in magnetohydrodynamics and other areas of 

computational physics will be performed more and more fre- 

quently . 
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ABSTRACT 

The nonlocal conductivity provides a useful representation 

of the a-c properties of nonunlform plasmas. A computer program 

it described which computes the conductivity for high frequency 

longitudinal perturbations. The routine is efficient and 

accurate. Its logical structure and the more novel algorithms 

are described. Overall numerical accuracy is described in terms 

of the convergence of the positions of the w-plane poles of the 

conductivity. The great care required to obtain this convergence 

probably is illustrative of what is needed in many calculations. 
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X.  INTRODUCTION 

Tb« behavior of weak disturbances in a plasma can be characterized 

by a nonlocal conductivity tensor.  This "conductivity kernel" is 

specified by the steady state (assumed to be known) of the plasaa. 

Because the unknown velocity dependence in the kinetic equation does 

not appear explicitly in the conductivity kernel, and because the same 

kernel determines the response to a variety of external forces, numerical 

computation of the conductivity kernel is sometimes more attractive than 

a direct numerical attack on the kinetic equation. Several authors have 

used the conductivity kernel to study one-dimensional electron-plasma 

2-5 
oscillations in Inhomogeneous plasmas. 

The purpose of this paper is to describe a method of computing the 

conductivity kernel which is efficient and converges well. The procedure 

is applicable to arbitrary monotonlc density variations, and could be 

extended to two-dimensional problems or to Include model collisions in 

a natural way. 

In Section II, the conductivity kernel is given for one-dimensional 

eV "trostatlc oscillations in a Haxwelliau plasaa. Algorithms, the 

dominant logical considerations, and details of the numerical techniques 

arc given in Section III. Evaluating convergence is facilitated by a 

normal mode interpretation of the results.  A set of detailed results 

is included in an earlier report.  Flow charts are given in the Apperdlx. 

II. THE NONLOCAL CONDUCTIVITY 

The general form of the nonlocal conductivity tensor has been 

derived ' from the Vlasov equation. Only the conductivity i'or high 
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frequency, one-dimensional electrostatic oscillations will be considered 

explicitly, although much of the work can be carried over to other 

«ifuations. 

A. Description of the Steady State 

For frequencies near the electron plasma frequency, u (x) « 

[4vH (x)e2/«01/2» where II (x) is the unperturbed electron density, the 
o o 

marf,iv: ions cannot respond significantly to electric fields, and only 

the electrons contribute to the conductivity. The unperturbed plasma 

is then specified by an electron distribution function, Ffs.v) - 

N (x)f (x,v), and an electrostatic potential, ♦ (x). 

The unperturbed collisionless electron paths in phase space are 

determined by the initial conditions, 

at t1 - t, 

and by the equations of motion, 

aV 
—r ■ 
dV 

Sr - - i V> 
a) 

where E (x') » - 3$ (x')/3x'. The distribution function must be con- 
o        o 

slstent with $ , o 

F (x'.v') - F (x,v) 
o        o (2) 
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Whenever an electron strikes a wall it sticks long enough to recomblne, 

and we should set 

Fo(x\v')-0 (2') 

for all later times. So few electrons .-each floating walls, however, 

that the error in assuming reflection at the wall is negligible. 

In most experimental situations, the potential, f  (x), will be 

such as to trap the negatively charged electrons, with the minimum 

potential, -$_, the "floating potential," at the boundaries. 

An orbit may connect two points, x and x\, either directly, or 

by going through a turning point one or more times. Going backward 

along the orbit from (x,v), let p be the number of times that the 

orbit has gone through turning points to reach x*. Then, for a parti- 

cular potential function, the segment of the orbit connecting x and x' 

Is specified by x, v, x', and p. The velocity at x' is written as 

v'(x,v'x',p), and the time to go from x' to x is denoted by T(X,V;X',P). 

The characteristics of the steady state which will determine the 

nonlocal conductivity are the orbit times, T(X,V;X',P), and the number 

of electrons on an infinitesimal set of orbits, F (x.v)dxdv. The actual 

choice of the model plasma is a matter of computational convenience and 

the availability of experimental data or a detailed theory. The rigid 

ion density can always be chosen to satisfy Polsson's equation. 

B. The Nonlocal Conductivity 

Formal solution of the linearized Vlasov equation by the method of 

characteristics ~ leads directly to the nonlocal Ohm's law, 

4?,1 
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L 

JXM - JCT(x;x')E1(x')dx' (3) 

where 0 <_ x <_ i. The nonlocal conductivity is 

«(*;*•) --^ 5 f,vu(x,v;x;tp) "o^^'^l.xCx.vix'.p) 
» j^0 J Iv'Cx.vax'.p)!   3v' * 

*     —CO 

where 

u(x,v;x',p) 
1, on allowed orbit segments, 

0, on forbidden orbit segments. 

The orbit segment (x,v;x',p) is "forbidden" if an electron from x' 

cannot reach (x,v) after p turning points. The other factors are de- 

fined above. 

The perturbing field, E., is the sum of any externally applied 

driving field, C ,  and the field set up by charges in the plasma, E , 

that is 

E1(x) - Ep(x) + Ed(x) (5) 

where, for electrostatic oscillations, 

iwE (x) - 4ir J, (x) 
P       1 

(6) 

and 

E (x) - j  Kfrsx'^x^dx' (7) 

where 

K(x;x') - ■— o(xjx') (8) 

We sVall usually refer to K, rather than o, as the conductivity kernel. 
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1 3 
Derivations ' of the conductivity kernel make It clear that 

Eq. (7) corresponds to Landau's form of the initial value problem, and 

that we nust follow the Landau convention with respect to any poles in 

the integrand of Eq. (4). The only poles in the lower half of the 

u-plane arise from the sum of successive passages (p) for orbits which 

are periodic with period equal to an integer multiple of the oscillation 

3 
period. These poles are easily destroyed by weak collisions, and pro- 

bably can be safely dropped in most unmagnetized plascas. We shall use 

a model in which there are no periodic orbits (u <• 0 for p > 1), and 

only the principle value of the integral over velocity contributes to 

the conductivity. This model corresponds exactly to a one-sided 

nonuniform plasma. 

II. COMPUTING THE NONLOCAL CONDUCTIVITY 

A. Simplification by Choice of Model 

He have just made one important simplification by choosing a one- 

sided model, keeping only p ■ 0 and p ■ 1. Choosing F to be Maxwellian 

makes a very important difference, specifically it allows us to eliminate 

v* from K by substituting 

3Fo(x',v') 
^Fo(x',v')--^-Fo(x,v). 

and (9) 

v'(x.v;x',p)   ,  ni 

into Eqs. (4) and (8), obtaining 

K(x;x.) . !P_ M  l   (-DP J"fo<v)u<x,v;x\p)e
iwT(x'v!x'»'>)vdv. 

(10) 
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«here 

£o(v) " \üä)      e 

Provided that all orbits have a turning point, i.e. for every 

electron at (x,v) there is one at (x,-v), it is readily shown that 

K(x;x') - K(x';x) (11) 

Since the number of electrons reaching a typical floating wall is 

Ö(m/M )'/*, we nay safely ignore the asymmetry resulting from wall 

recombination. This not only saves half the computing, but also 

simplifies the logic, since choosing x>x' (-e* (x) >_ -e4 (x')> 

guarantees that any electron having sufficient energy to reach x 

will also reach x". Wall effects can be easily included if necessary. 

B. Numerical Representations 

Algorithms must be chosen for three integrations: 

1. The orbit time, 

<x\p) 
/dx" 

vTxT   * *12* 
(x.v) 

Let 4 (x) - 0 at x - 0, and let 1/2 mv2-e$o(x) - C,  then 

and 

T(X,V;X',0) - T(X,C) - T(X',C), X > X' 

T(X,V;X'1) - 2x(xtp,C) - T(X,0 - T(X',£) , 

(13) 

where -e* (x. ) - C,  and 
o tp 
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x 

T(X^) - j        dx' . 0 < x < x^        . (14) 
o   /C+e*o(x') 

Only T(X,£) needs to be computed and stored. This is the familiar 

numerical problem of computing orbits in a static potential. We use 

Gaussian quadrature over each space step, 

T(xn+1'° ' T(V£) " 2 «i «<?!>   »        <15> 

where the a., y. are the Gaussian weights and points in the Interval. 

Usually (far from turning points), we choose 

y - x, g(y) = l//£+e*o(x) - v(x)     .        (16) 

Very close to turning points any polynomial quadrature of Eq. (16) 

breaks down, so we use the standard transformation, 

y - /x-x , g(y) - /x-x /v(x)      . (17) 

Because the potentials are sometimes fairly rapidly varying it is 

necessary to have an intermediate approximation, which is obtained by 

defini' , a virtual turning point, x* , to be used in the transformation 

of Eq. (17), where 

£+e$ (x  ) 
X?P " Vi + e[-»(X° Tna (xn)] (Vi-V    <18> o n+i  o n 
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2. The velocity integrals, 

l(x;x\p) = (-l)p f  fo(v)u(x,v;x\p>e
lwTvdv , 

can be rewritten, for x > x', as 

m 

I(x;x'.o) - / fo(v)e
li,T<,t»V51','o)v«lv 

and 

or 

I(x;x\l) - - / fo(v)e
lwT<at'v''x,'1>ydv  . 

(19) 

I(x;x',l) - / fo(v;e
lwT(x'-v:x''1)vdv   . 

o 

The integration is done by separate Gaussian quadratures over five 

ranges, 

I(x;x',l) - | T 
N-l T 

(20) 

where 

x» " Jx ^ h(vi.V^ (21) 

_i<l)T. s where h - f e*""v, and a. ",v. . are the weights and points for 

th ^ 
i„  order Gaussian quadrature in the range 

vi_l «»<'«»»<■»," v^,, vo - 0 i* "i " *i " "i-1- vo 

Integration in energy space, incidentally, is less accurate, the rapid 

phase variations being even mora compressed into the bottom of the range. 
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Various choices of the ranges and orders of integration have been 

tried. So long as the five velocity ranges cover the kinetic energy 

range from zero to about IS kT, and are compressed at the low end, the 

lowest extending from zero to approximately kT/25, the overall accuracy, 

using L. » 10 in each range, is better than four significant figures 

even for fairly large x-x1. In sheaths, where the d-c field is strong, 

even the longest orbit times are fairly short, and the low velocity 

ranges can extend to about kT/3. 

An alternative procedure, used in an earlier version of this pro- 

3 
gram, is to choose a single set of orbits, uniformly spaced in energy. 

Then auy one orbit can be used for many pairs of points (x,x') rather 

than a single row. Although, at first hand, this seems more efficient 

than a technique requiring completely different sets of orbits for each 

row, it is, in fact, an inferior procedure. The difficulty is simply 

that numerical accuracy requires a very fine mesh for the lower velo- 

cities (at any given x), while the same orbits will be on a wastefully 

fine mesh for points, x, far from their turning points. One winds up 

calculating a very large set of orbits, and picking out an appropriate 

subset for each row. The gain due to overlap of the subsets does not 

compensate for losing the advantages of Gaussian integration. 

3. The space integration, 

L 

Ep(x) - f Ux;x')Zx(x%)dx' 

o 

is the most difficult. Let K - K + K,, where, in £q. (10), K is the 

p ■ 0 contribution, and K_ is the contribution of reflected particles. 

>- 

\ 
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On the diagonal we have T(X,V;X,O) - 0, and 

v*o       o 
«_2(x) 

(x;x_e)._J>__JL J Fo(v)vdv       , 

and obtain the sane limit approaching x from above. Consequently, 

ImK is a smooth function with a maximum at the diagonal. The sane 

applies to both the real and imaginary parts of K-, and conventional 

quadrature techniques are suitable for these three parts of K. 

However, ReK requires a special algorithm. From Eq. (10) we see 

that ReK (x;x) - 0, again approaching from either side, but that 

lim d 
e*o dx" 

ReKo(x,x±e) - Wp2(x) £ / fo(v)u(x,v;x,o) -$fc - + -^ 2ki 

(22) 

is nonzero and changes sign at the diagonal, thus, ReK has a cusp 

on the diagonal. 

There are several possible techniques for handling the cusp. 

Most require a finer mesh that we can afford (see the next section). 

By far the best procedure is to generate smooth continuations of ReK 

•cross the diagonal in both directions. Clearly the smooth continuations 

cannot be generated by extrapolation. That would be equivalent to using 

the end point formulas with their large errors. 

Define the extended functions ReK~(x;x'), by 

ReK (x;x*<x) » ReK (x;x') 
o    —      o 

ReK (x{x,>x) 
o    — 

u 2(x') 
p. ReKo(x;x') (23) 
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ReKo (x;x'<x) - - Ji(xi) ReKo(x;x') , 
P 

ReK +(xjx'>x) - ReK (x;x') o      »   — o 

To Che extent that 4 (x) is smooth, there are no discontinuities in 
o 

ReK  and their derivatives. Now we nay write 
o ' 

f  ReKo(x;x
,)E1(x

,)dx' - f 1ttäl~^xlx,X&1(.x')dx,  + f KeXL*(x;x')E(x')dx'  , 

O O X 

and use midrange integration formulas right up to the diagonal. 

Difficulties at the boundaries have been avoided by doing problems 

where either the fields or the kernel are small there, so that the errors 

in the end point integration formulas will not matter. Except at the 

boundaries, the six-point midrange integration formulas were used. Higher 

order quadratures did not help because the relatively large mesh spacing 

puts mesh points, other than the nearest six, sufficiently far away that 

the behavior of the kernel is distinctly non-polynomial. 

Convergence of the results is best determined by examining the 

convergence of the eigenfrequencies of the system. These have been 

found by a fairly elaborate numerical analysis of the results of this 

calculation. For a fairly realistic model of a nonuniform plasma with 

a sheath, we obtained clear-cut convergence using the algorithms des- 

cribed above and 73 space points. Under these conditions the collision- 

less damping is determined to within no better than a few percent, even 

though the calculation is generally two orders of magnitude better. 
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C. Logical Structure 

Efficient execution depends primarily on the logical structure 

of the programs. The present routines are designed to work on a 32-64K 

memory sequential processor (CDC 3600). Fast masking operations are 

essential, as is at least a 48 bit word. Larger memory, mass memory, 

and/or a parallel processor could be used to great advantage. The 

logical structure is largely determined by the following considerations: 

1. K must fit entirely in core. A 73x73 complex matrix can be Inverted 

by the Gauss-Jordan method in about one minute of CPU time. The in- 

version time goes like N 3, but blows up much more rapidly when input- 

output operations are required. It does not seem likely, for this 

reason, that problems with two unknown space dependences will ever be 

done this way. Separable cylinder and sphere problems can be done. 

2. The kernel program consists of loops nested three deep (x,v,x'). 

Cylinder and sphere problems would have a second velocity dimension. 

It is, therefore, important to minimize: 

(a) The number of space points (see (1) above), and the number 

of velocity points. This requires careful choice of the al- 

gorithms, as considered in III.B. 

(K The execution time for the innermost loop. Standard trigo- 

nometric and modulus functions must not be used. The number of 

multiplications must be as small as possible, there should be 

no dividions, and integer arithmetic should be used. 

3. A separate program to compute the orbits, x(x,0» will be executed 

only once for any given model. In this program we can afford extra 
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time to store the orbits in the form most useful to the kernel program. 

The orbit calculations can be more accurate, removing them as a source 

of final errors. 

Summary of the Orbits Program - ORBGAUSS 

The routine chooses a set of energies suitable for the multiple 

range Gaussian quadrature of the velocity integration. These same 

energies are used for all columns, j, in the 1  row, where x. is uphill 

from x. (this fills half the matrix, the other half is obtained by 

symmetry). Within this set, the orbit times, T(£,X <x ), are computed 

and stored on tape, along with identifying information. Each such 

block of information is referred to as a "cluster"; there is one 

cluster per row, stored as a single logical record of binary information 

containing both integer and floating point Information. 

Summary of the Kernel Program - GAUSSKSIX 

A key preliminary calculation is a sine table, scaled to Integers 

(1+106), with argumfints 6 , where 

6n * *%$- x 21T, 1 < n < 5120 (24) 

Cosine is the first foui-fifths of the table, sine the last four-fifths. 

Phases will be scaled such that 2it - 4096 - 212, and truncated to inte- 

gers. Modulo 2ir can be taken in approximately one cycle time with a 

masking operation. The error in any one use of this table is 

which is relatively large. These errors, however, seem to cancel out 

very well. 
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By using the table we save, every tine the one-dimensional kernel 

program runs, approximately 106 calls of the trigonometric and modulus 

functions. Instead, the operations which are executed 106 times are 

cf the forms 

M - IM - IOT(l) 

M - M.AND.NOx 

and 

(25) 

(26) 

(27) 
KR(I) - KS(I) + IEXHO*ISITBL(M)    , 

where (26) is the modulus 2t operation, HOT - 4096-1, and (27) 

increments a piece of the kernel. 

IV. CONCLUSIONS 

The present routine takes about two CPU minutes per run, balancing 

the time needed to compute the nonlocal conductivity with time to invert 

the dielectric matrix, and nearly balancing computing and input-output 

operations during the calculation of the kernel. About 102 frequencies, 

i.e. several hours of CPU time, are needed to give a detailed and 

accurate picture of the high frequency properties of an inhomogeneous 

plasma. 

In order of importance, this performance depends on: 

(1) Keeping the kernel in core during the inversion; 

(2) Streamlining the innermost loop; and 

(3) Careful choice of integration algorithms. 

Our experiences obtaining satisfactory accuracy from these programs 

encourage a skeptical attitude about numerical calculations. In particular, 
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checking convergence, it ia Important to work at frequencies in 

the neighborhood of the eigenfrequenciea of a system. Far fron the 

elgenfrequencies the response depends on just a few parameters, and 

it sees» to be easier to get a few parameters to converge than many 

parameters. 
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APPENDIX 

Flowcharts 

Detailed flow charts are too long to give here. The charts show 

only large-scale structure. They, taken with the discussions of the 

algorithms and logical structure in the main text, are an adequate 

Introduction to the programs. The programs themselves are too long 

to list here, but we can furnish listings on request. The programs 

have been left entirely in FORTRAN, since the 3600 compiler assembled 

a very efficient innermost loop. The notes below refer to points in 

the flow charts. 

Note 1: Aside from being monotonic, the >otential is arbitrary. Sub- 

routine POT defines the potent'al and its first four derivatives at 

the mesh points. POT may also specify the sheath edge, if present, to 

help ORBGAUSS choose the velocity integration ranges. 

Note 2; To avoid excessive starts and stops of the magnetic tape units, 

both integer and floating point data are stored in the same array, under 

dummy names when there is a type conflict. 

Note 3; Between mesh points, $ is taken to be defined exactly by a 

truncated Taylor series using the derivative suppled by POT. 

Note 4: We do not, of course, ever carry out the space Integration. 

The algorithm merely converts the Integral equation to a matrix equation. 
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OMGAUSS 

INITIALIZATION 
Allocate memory, read Gaussian 
tables, and mesh sites, store 
d-c potential (note 1), and cal- 
culate cluster lengths. Put ini- 
tial data in array NLL (note 2), 
and store NIL on tape. Print 
initial data. 

Choose a row, x, the number of 
ranges in the velocity integra- 
tion, acd the limits of those 
ranges. Save these in the array, 
CLUSTER (note ?.), 

Choose a velocity for Gaussian 
integration. Compute energy, . 
Find NJ, the last mesh point fur 
which >-e* (NJ) (note ?). Save 
in CLUSTER.0 
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Calculate turning point, x , by 
repeated interpolation.  pCalcu- 
late time  to go from x  to x(HJ). 
Choose appropriate algolithia and 
compute, and save, tine for each 
step fron NJ down to l(x'"0). 
Store total time froa x  to x in 
array CLUSTER. Store  ptime steps 
from x to zero in CLUSTER 

Buffer out 
CLUSTER 

-YES. Print potential 
and other data. 

© 
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, 
CAPSSKSIX 

INITIALIZATION 
Define six point Integration con- 
stants, read scaling constants, 
calculate sine and cosine table. 

Buffer In the preliminary 
data record, NLL 

Buffer in CLUSTER 
for first row 

Print preliminary 
Information 

Choose row, start buffering 
next row 

Choose point on velocity mesh, 
and calculate contribution to 
kernel at each x'<x. 
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Height elements of K according 
to apace integration algorithm 
 (note 4). 

Calculate final kernel matrix 
and dielectric matrix. 

Invert dielectric matrix 

Calculate E for specified 

(Living fields. 

Save results for 
analysis 

5 
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Vortices, the "Particles" of Fluid and Gasdynamics 

O. Buneman 
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ABSTRACT 

An inviscid but vortical gas can be simulated as a 

quasi-continuous distribution of vortices.  The triple 

infinity of nass elements should be enumerated in such a 

way that two of the three indices identify the vortex 

filament to which the element belongs.  If these indices 

are chosen as discretized Clebsch variables, the velocity 

field is obtained from them by gradient formation.  Four 

dependent variables (arrays), namely x, y, z and a velocity 

potential for the irrotational part of the motion, then 

suffice to describe the gas in three dimensions.  A space- 

and time-symmetric leap frog scheme allows the variables 

to be advanced in time, with readily controllable numerical 

stability. 

INTRODUCTORY REMARK 

In this article is described an ambitious scheme for 

the numerical simulation of turbulence in an ordinary non- 

ionized gas.  While the central idea can be generalized to 

charge-and current-carrying compressible fluids, the scheme 

is not primarily offered as a means for solving plasma 
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problems.  The link with numerical plasma simulation is not 

of a physical nature; it lies in the common feature of 

describing a continuum by discrete interacting elements. 

At the time of writing the scheme is only a blueprint. 

Programming has not advanced beyond the stage of sketching a 

flow sheet (see Section IV). 

I.  OUTLINE OF PROJECT 

The calculation of small-scale "turbulent" gas or fluid 

movements has two distinct applications: 

1. Actual prediction of local atmospheric conditions 
in meteorology and air pollution control (or the 
corresponding application for the liquid phase). 

2. Extraction (fron e   range of numerical experiments) 
of "effective" v.icosity and heat conduction 
coefficients to be used for the simulation of 
turbulence in large-scale calculations, together 
with the verification of statistical turbulence 
theories. 

It is proposed to perform the small scale calculations 

by means of large digital computers.  Such calculations 

have, hitherto, presented a severe challenge in numerical 

gas and fluid simulation; difficulties arise in conventional 

schemes from having to go to large Reynolds numbers.  (The 

proposed new scheme will start at the limit  R - *>.) 

It is intended to use techniques which originated, and 

succeeded, in plasma physics and related areas involving 

many body problems.  The link is the particle concept, namely 

to identify vortices as the "particles" of aerodynamics. 

Vortices were recognized to be "locked" into a fluid or 

gas by Helmholtz and Kelvin*, over a century ago.  There have 

*Kelvin even proposed a vortex theory of fundamental particles, 
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already been several suggestions, and even successful attempts 

to calculate continuous two-dimensional vorticity by tracing 

large numbers of straight parallel vortex filaments through 

their mutual interactions, exactly as one traces "rod 

particles" in two-dimensional numerical plasma experiments. 

However, it is well known that the third dimension is 

extremely important in vortex and turbulence theory (how else 

would a wing fly?), and while global weather prediction can 

be performed, with fair success, as a two-dimensional exercise, 

local prediction will always require the terrain and obstacles 

to be taken into account. 

The new element by which the third dimension is to be 

introduced into large-scale numerical tracing of vortices 

is an old idea due to Clebsch. 

Three variables were introduced by Clebsch from which 

the velocity field of a vortica! medium is derived in three 

dimensions.  (This operation requires only a couple of 

gradient formations and a multiplication.)  Two of the 

Clebsch variables are the labels of the vortex filaments, 

the third is the velocity potential cf the irrotational part 

of the motion. 

Since the vortex filaments are locked into the medium, 

we can use their labels to identify mass elements of the 

medium.  A third label (not the third Clebsch variables) will 

be used to identify a mass element as to position along its 

vortex line.  From the first two labels, and Clebsch's 

velocity potential, we derive the velocity of the mass 

eleiaent.  This, together with a Bernoulli equation for the 
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potential, la equivalent to solving the Navler-Stokes equations 

for infinite Reynolds number. 

Computationally, thia procedure has the following 

attractions: 

(1) The fluid element positions are recorded as a 
three-dimensional array, with the addresses 
containing two-thirds of the information on 
the velocities.  Only four data (three position 
co-ordinates and a potential value) need to be 
stored under each address.  In conventional three- 
dimensional particle tracing one has six data per 
particle, but the addresses vamain without physical 
significance. 

(2) The Information can be so arranged that "leap- 
frogging" becomes possible in forming gradients 
and advancing the particles in time.  In other 
words, one gets the benefit of central difference 
precision and strict reversibility.  (We shall 
take up the topic of dissipation through molecular 
viscosity separately.) 

(3) All operations are algebraic, with only one 
division per particle per step. 

(4) The scheme is completely Lagrangian; there is no 
"mesh" as in Eulerian schemes and, one would hope, 
no worry about numerical stability. 

In essence, then, the Clebsch variables offer a high- 

economy computational scheme for tracing three-dimensional 

mlcroturbulence, and one ought, at least, to try this out. 

First studies are to be confined to simple problems, such as 

turbulence in consequence of instability of laminar snear flow, 

or behind a finite wing of simple shape. 

II.  BACKGROUND 

In thia section, the area of numerical turbulence studies 

will be surveyed very broadly, and the proposed attack will be 

linked to past efforts. 
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For an Introduction to vortical flow theory, Lamb's 

classical Hydrodynamics  is still an excellent start. 

Early theorists were preoccupied with ideal flow problems 

and tended to shy away from viscous fluids except where 

elegant closed mathematical solutions to the Navler-Stokes 

equations could be given. 

There followed a period when lack of detailed mathe- 

matical analysis was overcome by means of statistics, and 

great strides were made in the macroscopic description of 

2 
turbulence (see, for instance, G.K. Batchelor ).  This 

description will, for quite some time, remain the best way 

of introducing turbulence effects into large scale numerical 

3-9 
weather prediction   where turbulence is simulated* by a 

pseudo viscosity, thus allowing the use of the Navler-Stokes 

equations on false pretenses.  For it has been recognized 

that genuine molecular viscosity plays a significant part 

only on the smallest scale, in particular in the boundary 

layer, and that the evolution of eddy patterns is essentially 

governed by Euler's equations.  Turbulent phenomena and their 

statistics are often surprisingly insensitive to the value of 

the molecular viscosity (see, for instance, Townsend  ). 

Computers have been used with spectacular success to 

solve the Navler-Stokes equations, born on the large scale 

with a pseudo viscosity and on a small scale with molecular 

viscosity.  The latter application has advanced our under- 

standing of boundary layers.  A sequence of conference 

11 12 
proceedings  '   supplies a useful bibliography for this 

*The term "simulation" has, in this context, not the same 
connotation as in "numerical plasma simulation" where it 
means making a computer model of the plasma. 
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fast developing subject.  For low end moderate Reynolds 

numbers the numerical schemes are quite successful. 

13 
With high Reynolds numbers, there has been less success 

A number of papers in the proceedings deal with this subject 

It is recognised that the high-Reynolds number problem is the 

missing link between the small and large scale Navier-Stokes 

computations, but the drastic step of going right back to the 

Euler equations for computational work has not been taken by 

many15'16. 

Huch of the numerical work is, of course, restricted to 

two dimensions, and the idea of solving Euler's equations 

numerically by tracing vortices was first proposed, «nd 

Implemented, without the third dimension  .  It is interesting , 

to note that this method of attack was developed further by 

18-20 
researchers     with a plasma background. 

The extension to three dimensions seems to be novel and 

untried.  It is made attractive by the use of Clebsch 

variables in place of the vortlcity and stream function, 

Introduced for two-dimensional computations by Fromm and 

Harlow  .  The author haa not found any reference to 

Clebsch variables in an attempt to re-formulate classical 

23 
electrodynamics.  Directly from the interpretation  of 

Dlrac's variables one can deduce that the idees presented 

here can be extended to charge- &nd current-carrying    * 

reletlvlstic compressible fluids. 

III.  DISSIPATION 

The conservation of vortlcea, and the validity of the 

Clebsch representation of the velocity field, are subject to 
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the absence of viscosity.  It may be that a simple modifica- 

tion of the Clebich representation could be made to account 

for the viscous tern in the Navier-Stokes equation (this will 

be looked into).  Alternatively, one could design a scheme 

for writing off occasional vortices—perhaps with random 

selection—provided this does not cause excessive numerical 

noise. 

However, one of the objectives of the proposed studies is 

to account for the anomalous viscosity, or "eddy viscosity" 

which has to be introduced into large-scale aerodynamical 

calculations to fit the observations.  From this point of view, 

it is almost desirable to start with the unrealistic "ideal" 

fluid or gas model, and to ignore molecular viscosity 

altogether.  Indeed, our objective is to explain apparently 

irreversible phenomena In terms of strictly reversible 

fundamental laws.  Here we have another point of contact 

with plasma physics where one looks for causes of "anomalous" 

resistance and diffusion under conditions where the strictly 

reversible "colllslonless" Boltzmann equation should apply. 

There is, of course, some numerical noise present in all 

computations—mainly due to replacing contlnua by finite 

elements.  Rounding-off errors tend to lie well below this 

noise level which often makes it reasonable to use the shortest 

possible word that one's computer will allow.  (It is intended 

to keep to 16 bit words on the local IBM 360.)  However, by 

careful choice of one's finite-difference scheme one can main- 

tain reversibility down to machine accuracy.  This we do by 

using central differences In time (Sec. IV).  With it would go 

a gamma of five-thirds in the gas law for relating "he pressure 
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In Bernoulli's equation to the "particle" density.  The 

remaining numerical noise may possibly have the diffusion 

character of the typical viscosity term, or perhaps enhance the 

realism of the simulation in other ways. 

IV.  THE PROGRAM 

The work proposed here is almost entirely "from scratch", 

and it is therefore necessary to give more than a verbal 

description of how it is to be done.  The basic equations, 

(i) Navler-Stokes equations for Re— », i.e., Euler's 

equations, (li) continuity equation, (ill) equation of state, 

need not be recorded here, but everything beyond these is 

novel or unconventional. 

Clebsch's variables — C, " and ♦, as we shall call them — 

are relatively unknown; Clebsch showed that In the absence of 

viscosity, one can write the velocity field in the form 

|* — grad ♦ + t grad n (1) 

and C, n are quantities carried by the medium 

4f - 0 (2) 
OX 

ft.  0 (3) 

while a evolves according to the generalised Bernoulli 

equation: 
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or (after adding dr/dt tinea equation (1) and using 

equation (3)) 

dt       J p 2   Kit' 

The vortlcity Is obtained from £ and n by: 

r curl    Hjrl"   grad   C   x   grad  n 

(5) 

(6) 

The obvious physical irrelevance of potential zeros, 

In our case the zero levels of ♦ and n, makes one wonder 

whether introduction of Clebsch's variables does not violate 

the rule that numerical simulations are usually most 

efficient when one adheres most closjly to physical reality. 

(There is an even more severe arbitrariness in the choice of 

K,   n and ♦: note that the "gauge" transformation 

1 
♦ - ♦ - £n 

- e n* ■ 

leads to the same representation of dr/dt as in equation 1.) 

However, the accompanying picture of a family of vortex fila- 

ments, each representing some small unit of circulation, 

shows that £   and n provide a count for these filaments and 

the arbitrariness in their choice is nothing other than the 

arbitrariness of where to begin this two-varlaole count.  The 

concept of finite size (rather than infinitesimal) elementary 

vortices, and the discretization of the variables C., n which 

the computer demands, provide the link with reality.  (What 

is even aore encouraging is that in superfluidity one 

really does encounter quantized vortices!) 

448 



Vortices 

The evolution of the density p in accordance with the 

conservation of mass elements of gas. will br> provided for 

in the computations by giving each element a third label, 

C, in addition to £ and n.  All three labels are discrete 

variables.  They become Integers in the program (after suitable 

scaling) and they ber.ome the triple indices of four arrays, 

♦ (C.n.C), x(C,n c), jr({,n,C), z(S,n,C).  Equations (1) *nd (5) 

sav how each member of these array i is to be updated in time. 

We oust also derive the density p it each step and we take 

5/3 p « p   .  (The fractional power will be pre-tabulated in core 

rather than evaluated by subroutine.) 

The density will not be evalua :ed by a count per •Aesh-cube 

in this program.  Likewise the gradients will not be formed by 

working over an Eulerian mesh.  Instead, we look rnly at the 

spacing of the "particles" or mass-elements:  there will be no 

need to introduce any mesh other than the £, n, c mesh resulting 

from making £» n, r   into integer indices.  Figure 2 shows the 

mesh of masa-elements as it appears in x, y, z-space.  The 

volume of the element labeled £, n, ( is thet of a parallele- 

piped.  We calculate this volume from its six face-centers. 

These face-centers can be identified as "particles" with 

labels (? ± «C/2, n, c).  (5, n ± 6n/2,  O and(C, n, C± «c/2). 

The volume and hence the density, then follow from: 

density   * volume V ■ a • b x c (7) 

-►■+■► 
where a, b, c are given by the representative definition 

-+•  -+ •*■ 

a " rf! + «c/2, n,C " r5 -«C/2, n. 5      (8) 
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Note the spatial symmetry of this difference formula - it 

means that we have central difference precision.  Evidently, 

we need records of r at face-centers of the 5, n, C mesh, 

rather than at the cell centers.  From V, or V   (here is the 

division in our program), and a, b, c one also obtains 

the gradients of 5, n, ;: 

(9) 

etc., aa readily deduced from the fact that the direction of 

grad £ is along b x c. 

Moreover, grad A follows from: 

grad * " Jr grad £ + JT grad n + •£*■ grad C   (10) 

where, representatively, 

35   Si  ^5 + «5/2, n,c  *5-««/2,n,t^       (11) 

(the division by 8? will be eliminated by scaling.)  The 

record of Q  should, likewise, be available at the face-centers. 

I 

Figure 1. Showing family of 
vortex filan.ents (ringed) and 
surfaces on which ( and i) are 
constant. Circulation around 
closed curve = 9units, approx. 
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Figure ?.    Lacrangi«111  mesh:     mass element  labelled  {%,% C)  ~ 

accordini;  to  its  center :tt    r{ C,T|, C)   ~  ^K n  pctrnllol- 

opipod  v.'j Ui  face centers  at     r( § ±  6f/,':,   1|, C)> 
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Indeed, ♦ is rather like a fourth co-ordinate.  The density 

and the gradients given here are for the cell centers and 

can therefore be used to update four co-ordinates there: 

r   .?  + 6t /ST) 
new   old      Vdty present 

new  Told    Vdt- ]t  Vdt> present 

(12) 

(13) 

For central difference precision in time, and for numerical 

reversibility, we must interpret "old", "present" and "new" 

as three successive time steps, separated by Intervals St/2. 

At successive time steps ,we therefore need coordinate records 

alternately at the cell centers and the face centers.  Now 

the cell centers are the face centers of a lattice centered 

on the original face center and all we need to do is to 

switch from one lot to the other. 

When indexing the two alternate lattices one can use the 

rule that for even time-steps a cell center has one index 

even and the remaining two indices either both even or both odd 

while at odd time-steps one has either all indices odd or only 

one index odd for a cell center.  In other words, the sum of 

the cell center indices and the time step index is always 

even, while the corresponding sum for face centers is always 

odd. 

We are now in a position to outline the main loop 

of the program which advances a vortex distribution in 

time: 

1.  Leap-frog through the vortex array, in 

accordance with the odd-even index rules Just described, 

and: 
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2. Calculate the three displacement vector» a, b, 

c from equation (8) 

3. Calculate the volume and Its Inverse from 

equation (7). 

4. Calculate the gradients of C, n, c from 

equation (9). 

5. Calculate 3*/3£,  3j/3n, 3*/3C from equation (11). 

6. Calculate grad * from equation (10). 

7. Calculate the velocity components from equation (1). 

8. Advance the position from equation (12). 

™2/3 
9. Look up the value of /dp/p « V    in a table. 

10. Calculate d$/dt from equation (5). 

11. Advance $ from equation (13). 

12. Increase time step and go back to instruction 1. 

V.   STABILITY 

The development of turbulence (meaning the grouping 

of vortices into intricate patterns of various scales) from 

sheared flow (a simple, ordered initial state of continuous 

vortlcity) is the result of repeated Kelvin-Helmholtz 

instabilities.  In computer simulations we must make sure 

that any observed instability is not of numerical origin. 

The analytical tests for physical and numerical instabilities 

are quite similar; one follows the evolution of small 

perturbations about a given state.  An analytical study of 

shear flow stability in a compressible gas has already been 

made, using the co-ordinates €, r\, c, t of the present scheme: 

the results seem to be related, non-trivially, to those 
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obtained by the Eulerian scheme (stability depending on shear 

profile). 

No rigorous test for the numerical stability of our scheme 

has, as yet, been applied ts the same state.  It is a matter of 

relatively minor modifications to the test for physical 

instability - essentially replacing differentials by finite 

differences - and this would be a preliminary task to the 

execution of our program.  One can already predict the 

familiar numerical instability due to taking At > Ax/c since 

ordinary sound waves are Included in our analysis.  We shall, 

of course, avoid this instability by making At smaller than 

the critical limit.  In view of the simplicity of the 

algebraic operations in each step, we hope, nevertheless, 

to realize good speeds in following the time evolution of 

the system. 

There may be other sources of numerical instability, but 

it should be kept In mind that many of the conventional fluid 

dynamics schemes are fraught with numerical Instabilities 

because of violations of causality.  (The classical instability 

cited in the preceding paragraph Is really an example of the 

simulation becoming non-causal when one steps ahead too fast.) 

We are avoiding, here, a typical non-causal step used In many 

conventional simulations, that of determining the velocity 

field from the vorticity* rather than from the momentum equation. 

This inversion of causality is associated with the incompres- 

slbility assumption which leads one to eliminate the pressure 

*This Involves solving the elliptic (non-causal) Polsson 
equation, a time consuming operation for which fluid dynamiclsts 
have, in the past, employed what to plasma simulators seem 
clumsy and outdated methods. 
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fro« the three momentum equations and to calculate the pressure 

distribution aposteriori, if at all.  Causally, it is the 

pressure distribution which determines the evolution of all 

three momentum and velocity components, while constant volume 

is maintained by the extreme pressures which result from con- 

traction or expansion of fluid elements.  Inasmuch as our scheme 

is Lagrangian, we may derive confidence from the fact that 

no numerical instabilities (other than that arising from 

the limitation of At by propagation speeds) have been 

reported by plasma particle simulators. 

VI.  MESH STRETCHING AND DISORDERING 

In our Lagrangian representation the simple state of 

uniform unit shear (y-velocity increasing with x) in a gas of 

constant density can be given in the form: 

£» y - n + £t, z - C. ♦ 
2 

■C t/2. 

While at t - 0 the Lagrangian (£,n,C) mesh and the Eulerian 

(x, y, z) mesh coincide, as time progresses the Lagrangian 

mesh will manifest itself in physical space as an array of 

more and more skewed parallelepipeds.  In principle, there 

arises no inconsistency in the basic differential equations 

(l)-(5) from this skewing of the coordinate system.  However, 

in practice, when the differentials are replaced by finite 

differences, as in equations (7)-(13), "neighboring" mesh 

points get pulled further and further apart, so that differences 

give poorer and poorer approximations to differentials. 

It will therefore be necessary, from time to time, to give 

up the original labelling of the gas elements and to start with 
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a new labelling» as If beginning a new run, using the finish of 

the old run as initial input.  The new labeling must be of the 

"Clebsch" type, i.e., £  - const and n ■ const must describe 

the same vortex lines as £ » const and n ■ const, and the 

density of these lines must be the same everywhere: d£  ' dn  " 

d£ . dn*  The new labeling, however, should reflect physical 

proximity better than the old.  While it is easy enough to devise 

a relabeling scheme for the uniform shear state given above, one 

will have to look very closely at the more disordered vortex 

patterns which result from the development of Kelvin-Helmholtz 

instabilities to large amplitudes before one re-orders the vortices 

into new groups exhibiting less stretching. 

The order-disorder transition was manifested quite 

dramatically in some early one-dimensional simulations of a cold, 

unstable plasma.  We expect similarly disordered, pattern» to 

develop here - meaning patterns too intricate for the human mind 

to comprehend and utilize.  In the relabeling, it Is likely that 

rejection of information will be necessary.  There will be too 

much detail for even the computer to handle economically.  It Is 

interesting to reflect that in writing off information, we, and 

neither the physical system nor the computer, raise the entropy 

of the system.  We shall be taking the first step towards the 

macroscopic, phenomonological description of turbulence. 

Exactly how to re-order* an excessively turbulent gas 

configuration cannot be determined until we have seen the first 

'turbulent' configurations emerge from our simulation. 

*One is tempted to try a three-dimensional version of the 
Livermore FLAG code (2nd conf. Num Fluid Oyn. contribution by 
W.P. Crowley), but it should be realised that the proposed 
scheme is based on quadrilateral, not triangular cells. 
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Obviously, a good computer - human interface is required here, 

and in addition to standard "Input/Output" devices, including 

maps printed out at frequent steps, we require some funds for 

filming our output.  Xn plasma simulations, filming is now 

quite an accepted routine. 

The problem of re-ordering may be complicated by the 

possible development of large domains with low vorticity so 

that very few tracer particles are kept in such almost 

irrotatlonal domains.  One may have to resort to the ugly scheme 

of using different scales in the different places. 

VII.  BOUNDARY CONDITIONS 

In an ideal fluid satisfying the Euler equations one can 

only impose one condition on the three velocity components at 

a boundary, namely that the fluid should flow along the boundary. 

A two-dimensional subgroup of the three-dimensional array of 

elements will have to stay at the boundary, meaning its (x,y,z) 

values have to conform with the equation of the boundary surface. 

Our method cannot simulate the boundary layer Itself - this 

would require a finite Reynolds number. 

However, we may wish to release occasional vortices from 

the boundary (which, in fact, is itself a vortex sheet 

producing the transition from zero to non-zero to spatial 

velocity).  In so doing, we must make sure that no mass is 

Injected along with the vortices.  The third label in our scheme 

(measuring mass density along a vortex filament) gives us the 

necessary control.  Injection of vortices is physically 

justified where the fluid becomes highly stressed, i.e., where 

our Lagrangian grid becomes highly distorted.  In the first runs, 
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we would find such places by Inspection and release vortices 

accordingly.  Later, a subroutine might be developed to achieve 

this automatically. 
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Three Schemes for Drift Motion 

D. C. Stevens 
Cour ant Institute of Mathematical Sciences 

New York University 
New York, N.Y. 

Courant Institute of Mathematical Sciences, New York University 

Three numerical schemes for solving for the time 

evolution of a plasma are discussed and the results of 

numerical experiments compared. 

We are interested in the time evolution of 

physical systems obeying equations (1) - (4). 

3f  ,, »<B,f) - o 

f v f dp 

(1) 

(2) 

|B
2
 + P (3) 

H k x VB (4) 

Here f ■ f(x,y,y,t)  is the density of guiding centers 

of particles in a plasma.  The time scale is slow and 

electric field effects are neglected, k is a unit vector 

perpendicular to the x,y plane. The magnetic field is 

perpendicular to the x,y plane and has magnitude B. v  is 

the component of the particle's energy perpendicular to 

the magnetic field. There is assumed to be no variation in 
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the perpendicular direction. 

Remark 1. A consequence of (1) - (3) is that 3/3t  f du = 0. 

Using (1) and (2) we get | 3f/3t du - f u 3(B,f)/3(x,y) du = 0 

and then 3/3t | f du - 3(B, I u f du)/3 (x,y) ■ 0. The 

second term of the last equation is zero because of (2) 

and (3), proving the remark. 

Remark 2. A consequence of (1) and (4) is that the 

particles in the plasma, moving with velocity v, always 

see the same constant value of f at each successive 

position. This follows directly from (1) and (4). 

The initial state from which solutions will be 

followed has only 2 u values occurring (i.e. f(x,y,u,t) 

■ fj^x.yftJßtw-Uj^ + f2(x,y,t)6(u-v2)). We take ux » 1 

and u2 ■ 2. The function f.(x,y,0) which was chosen has 

circular symmetry about the point (.35, .5) and has 

2 2 
radial distribute . f(r) -. '5(1 " (r/,3) ' ' r *  "3 . 

.0 , r > .3 

The function f_(x,y,0) has circular symmetry about the 

point (.65, .5) and has radial distribution 

f(r) 
' 125(1 - (r/.3)2)2, r < .3 

The time evolution 
0 r > .3 

for a system having only one of f. or f, present would be 

such that f would remain constant and all particle motions 

would be circular. The time evolution of the combination 

of f, and f, will be a swirling intermixing motion. A 

consequence of Remark 1 is that the aggregate plasma 

should not wander from its initial position. 

In each of the three schemes studied, the stepping 

forward of the pertinent quantities (e.g. particle position 
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or f value) is done by a Runge-Kutta differential equation 

solving subroutine. In each case run, the dt increment 

was reduced so much that the final halving of dt produced 

only minor variation in the evolution. 

A basic 20 by ?C grid is used for comparing the 

solutions of the three schemes at various times. Grid 

point i,j has coordinates (i-l)/19, (j-l)/19. 

The distance between two distributions is defined to be 

the maximum difference of the f_ densities taken over all 

basic grid points i,j. 

Scheme G. 

Simple differencing techniques are used to step 

forward the plasma, using equations (1) - (3). The grid 

schemes have size (19n + 1) by (19n + 1) so as to 

facilitate comparison on the 20 by 20 comparison grid. 

The largest grid used was 115 by 115, which filled the 6600. 

(Several arrays this size are needed by the Runge-Kutta 

subroutine.) 

Scheme P. 

The particle scheme used particle in cell (pic) 

methods, i.e., bilinear interpolation of densities and 

gradients. Equations (2) - (4) were used. The background 

grid was 20 by 20 or 39 by 39. Quiet starts were used. 

Only about 14000 particles would fit in the 6600. This 

seemed to be insufficient with the 39 by 39 grid because 

of observed noise effects, but was sufficient in the 

20 by 20 grid. 
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Scheme C. 

Characteristic curves of the differential equation 

(1) were numerically determined. Particles move on 

characteristic curves* To obtain greater accuracy, no 

background grid is used. Several hundred "representative" 

particles are selected (uniform spacing for convenience) 

at th'i start and tagged with an f valie. By Remark 2 

this f value will not change during the time evolution 

of the system. To find either density (f. or £-) and 

its gradient at any point, the nine nearest representative 

particles are found and a least squares second degree fit 

is made to their f values, which yields f and 3f/Sx and 3f/3y 

at the given point.  (The choice of nine as opposed to 

8, or 10, etc., is somewhat arbitrary.) The representative 

points are stepped forward in this manner using equations 

(2) - (4). This method works well initially, but as 

the gradients become steeper the time step dt must be 

reduced drastically, and as the two species swirl, 

more representative points are needed. This method is 

limited more by computing time limitations than 

by computer size. An accurate run to t - .05 required 

3 hours, while this required only seven minutes with 

scheme G. 

Comparisons of the Schemes. 

Table I gives distances between several schemes 

at t * .05. The subscripts on G tell the size of the grid 

schemes, while the subscript on C tells the number of 

particles. The subscript on P tells the background grid 

size. All of the P schemes used 13960 particles. 
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It appears that the G and C methods can give accurate 

solutions on the 6600, while the particle method would 

need additional storage for such accuracy. Table II gives 

distances at t = .2. 
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Table I 

t - .05 

G20 G39 G96 G115 »20 P19 C496 C1984 

0 .016 .020 .021 .021 .071 .027 .021 

.016 0 .010 .012 .024 .074 .026 .015 

.020 .010 0 .001 .024 .075 .021 .012 

.021 .012 .001 0 .024 .075 .021 .012 

.021 .024 .024 .024 0 .066 .030 .035 

.071 .074 .075 .075 .066 0 .066 .075 

.027 .026 .021 .021 .030 .066 0 .024 

.021 .015 .012 .012 .035 .075 .024 0 

Table II 

t - .2 

G20 G39 G96 G115 P20 P39 

0 .080 .084 .084 .180 .804 

.080 0 .067 .053 .110 .804 

.084 .067 0 .063 .108 .804 

.084 .053 .063 0 .108 .804 

.180 .110 .108 .108 0 .804 

.804 .804 .804 .804 .804 0 
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Nonphysical Modifications to Oscillations, Fluctuations 
and Collisions Due to Space-Time Differencing 

A. Bruce Langdon 
Lawrence Radiation Laboratory 

University of California 
Livermore, California 

ABSTRACT 

In recent years computer simulation has become a powerful tool 

for the study of plasmas. Much effort and computer time is being expended 

in applications to new and more difficult problems. In support of this 

work we have performed an extensive theoretical analysis of a common 

class of many-particle simulation methods. As one does to learn basic 

properties of real plasmas, we examine oscillations, fluctuations and 

collisions in the idealized case of uniform and infinite or periodic 

plasma. Even in this simple situation there are several instances in 

which the models fail (mildly to grossly) to reproduce plasma behavior. 

This paper outlines the theory and discusses such non-physical behavior 

caused Ly the finite-difference methods. The plasma interacts coherently 

with the periodicity of the spatial grid on which the electromagnetic 

fielüs are uefined and with the periodicity of the finite-difference 

time integration. Various parametric instabilities are sometimes induced, 

which may be either weak or strong and may be difficult to distinguish 

from real instabilities. There is also high-frequency noise associated 

with the rate at which particles cross the spatial grid cells. If the cime 
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step Is large enough that the frequency of this noise exceed*; the time 

sampling frequency then this noise degrades normal fluctuations and 

collisions and can became excessive. The theory has helped others 

examine experimentally the nature of such nonphysical effects. Some 

suggestions are made as to how researchers using these models might 

respond to these results. 

I.    INTRODUCTION 

The plasma models I am going to discuss originated at Stanford 

in 1963. In order to make simulation in two dimensions economically 

practical, Buneman and Hockney developed a model which uses a spatial 

grid on which the charge density is found from the particle positions, 

Poisson's equation is solved in finite difference form, and then the particle 

12 3 
forces are interpolated from the grid. * *  This is much more 2fficient 

2 
than sunning N Coulomb interactions among N particles. 

They also realized that computational and physical problems 

associated with the divergent character of the Coulomb field are 

eliminated; the interactions at small separations are  smootned reducing 

the large-angle binary collisions which are of little interest in hot 

plasmas and which had been exaggerated in simulation because of the 
3 

small .rumour of particles used. 

Although simulation in one dimension was possible by other 
4 

means, the new model offered simplicity and speed there too. 

Part of the gain was in the method of integrating the system 

forward in time.  The algorithms were fast and preserved certain 
5 

physical properties. 
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The advantages of the Stanford approach were not Immediately 

recognized elsewhere, and much simulation was done for which the gridded 

model would have been more efficient. 

Other people developed versions of the model with more accurate 

interpolation and different methods of solving Poisson's equation, etc. 

In 1968 wide interest was aroused in the plasma community by large 

scale simulations done at Los Alamos of several problems in the controlled 

thermonuclear fusion research program. Since then simulation by these 

methods has been widely accepted as a plasma research tool. 

The models obviously do not accurately reproduce the microscopic 

dynamics of a plasma. One must consider if and how such errors will 

modify the macroscopic behavior. There are usually far too few particles. 

This causes discrete-particle effects such as fluctuations and collisions 

to be exaggerated. There may also be too few particles for adequate 

representation in phase space of plasma phenomena such as the Landau 

damping wave-particle resonance. There can be serious problems with 

initial and boundary conditions. Roundoff errors can usually be made 

negligible compared to other errors. The principle concern of this 

paper is errors caused by the finite-difference representation in space 

and time of the field equations and particle dynamics. 

Such sources of error are difficult to assess in practice. Some 

study of their nonphysical effects was neeCed. Much of this has been 

done through experiments with the models. "~ 

In addition to empirical results, some theoretical analysis is 

desirable. This is true for the usual reasons that adding a good theory 
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Implies a better understanding than a stack of oscillograms or computer 

output alone. One also hopes the theory will predict unexpected Interesting 

results that can be verified experimentally, and I will describe some 

results which I think are In this category. 

There has been some approximate discussion of the models. Smoothing 

3 6 
and noise aspects of the spatial grid were recognized early ' and approxi- 

mate theoretical descriptions made of each. ' *  The time integration 
5 

was considered heuristically. 

However regarding the space-time grid simply as a source of smoothing 

and of noise fails to uncover some very Important effects Involving coherent 

Interaction between the plasma and the sampling in space and time. Some 

theory has appeared which includes exactly the effects of the finite- 

dlfferendng and is applied to linear wave dispersion and stability and 

17 18 
to energy conservation. *  We have also looked at fluctuations and 

collisions. The theory is quite complete now, and in about as tidy a form 

19 
as is possible for such a system.  Different parts of the s.mulation 

algorithms are easily identified and changes made. We keep the results 

in a form permitting easy comparison with real plasma theory, where possible. 

Mathematical details will not be emphasized here. 

Although our techniques can be used for more general cases, we 

have confined our examples to models having only Coulomb interactions; 

in one instance an exte-ial magnetic field is imposed. This is because 

such models have so fjr been prevalent, ana secause it is the longitudinal 

field in general models which is expected to cause the greatest difficulties 

in simulation. 
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We are not so interested in the accuracy of individual particle 

orbits as In the accuracy of collective plasma phenomena. Therefore, 

our analytical approach, terminology and criteria are more that of the 

plasma physicist than of the numerical analyist studying, say, an 

initial value problem for a small system of differential equations with 

no application in mind. In several places the collective properties of 

warm plasmas play a crucial role. 

II. THE SIMULATION MODEL ALGORITHMS 

We now give the calculations made to advance one time step in 

a proto-typical model of the class considered.    For simplicity this 

example is one-dimensional.    This paper will not consider boundary condi- 

tions; the models are assumed to have periodic boundary conditions. 

The position of particle i at time t   = sAt is x.     and its 

velocity at time t   ,,- 1S v^ - i/o-   Tne first step is to calculate 

a charge density, defined on a fixed spatial rjrid whose j'th mesh point 

is located at Xi  = jAx, by means of the chargo sharing 
J 

^."{«l^j-"^ 

This can be Interpreted as the charge density for finite size particles, 

18 sampled on the grid.   Opinions vary on the choice between zero order 

(nearest-grid-point or NGP, Fig. la) and first order (or linear, as in 

CIC or PIC, Fig. ib) interpolation; other methods are rarely used. 
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S 00 

S (x) 

Fig. 1.    Interpolating function,  or cloud shape,  for (a) zero order 
(NGP) and  (b) first order (linear) Interpol ation. 
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Fron p an eltctrlc field Is found, usually on the same grid, by 

a grid approximation '■JO Gauss1 law. For example, one solves 

- -,, ■ **'" '> - '<•'■' ■ 

This Is the 1-D version of the original 2-D scheme and 1s mathematically 

4 17 
equivalent to simpler 1-D-only methods.' 

There Is nothing In our analysis that requires the use of these 

field equations. Other field equations are often used to emphasize 

the Fourier modes differently In order to reduce short-wavelength noise, 

Include only selected modes, Improve long-wavelength accuracy, etc. 

Only when numerical examples are given do we particularize to these 

equations. 

The particle force is Interpolated from the electric field 

F1.s"c»1pj,sS(Xj-x1.s) 

using the same weighting function as earl'er. 

Now we come tc the Integration of the particle equations of motion. 

In the "exact" sheet and rod models special handling was commonly given 

to binary collisions. Corrections were n.ade when sheets crossed, or the 

model could even be made exact (to within roundoff error;. In 2-D time 

steps could be made smaller to handle near encounters. These measures 

become too expensive if very large numbers of particles are used. 
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With the grid it was now less clear how to go about handling 

crossings and near encounters.   At the same time, it was realized that 

such special handling was no longer needed because the short range 

Interactions were made very Inaccurate in a useful manner, i.e.. they 

were smoother.   Buneman, et al., Ignore the encounters and choose 

the following algorithm by other criteria:4,5 

- v, 

"1 
1.s*1/2-'1.s-l/2    y 1.1*1 "I.« 

Al '    i.s+1/2 At 

This scheme is simple and fast, and is now the most popular. Two other 

schemes that have been used are cer^fnly no simpler and in fact they turn 

out to be slightly unstable.   I shall stick to this scheme. 

The model dynamics are now specified.   The model conserves 

particles and momentum (despite the spatial nonunifortuity), but not 

energy.    It Is not Hamiltonian.    It is reversible in time and space. 

III.       ANALYSIS OF THE MODEL 

The analysis makes use of Fourier transforms in space and time, 

as is usual for uniform collisionless plasmas.    This also makes possible 

exact description of the finite difference method«.    It seems more 

informative to work with the deflections from zero-order orbits caused 

by the fields rather than to seek a finite-diff      xe analogue to the 

Vlasov equation; the relevant features are seen directly. 

We first find the dispersion function which describes the linear 

response of the plasma to perturbing fields and whose zeroes qive the 

dispersion and stability of free oscillations. 

474 



Oscillations, Fluctuations, Collisions 

Finite At   makes the simplest change possible; the resonant 

J9 denominator becomes 

q    - -    g 

The principal difference in the roots u>(k) Is a relative upward shift of 

The periodicity in u reflects the fact that frequencies differing 

by harmonics of u> £2n/At represent the same change in phase during a time 

step (exp[-i(w-qu )At] ■ exp[-iu»At]) and are therefore equivalent as seen by 

the difference equations.   This is a sort of stroboscopic effect that 

fools   not only the observer but a'/so the system dynamics.    The frequencies 

iu-qu. } ire called "aliases" becau-3 they are different designations for 

the same thing. 

For simple harmonic oscillations, as in the small kx.. limit, it 

is well known that this scheme becomes unstable when m At  • 2.    Collective 
P     - 

19 
effects change   this to tu At > 1.62 for a Haxwellian    .    This is because 

Bohm-Gross dispersion increases a above u , not because particles traverse 

a large part of a wavelength in one time step.    So one can't use large 

u,   tt just because one is only interested in ion frequencies, say. 

The spatial grid introduces much greater complication.    Analogous 

aliasing for spatial grid fields makes k space periodic; the periods are 

called Brillouin   lones.    For the particles, however,the aliases 

ik =k-pk j, k *2T7.'.X, are not equivalent.    Consider a field Ej=E exp(ik X.). 

The interpolated force is not sinusoidal, itr spectrum has components 
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at the wavenunbers {k } with relative amplitudes given by S(k ).   There 

results a nons1nuso1da1 density perturbation at these wavenumbers, which 

are Indistinguishable when sampled for p .   Thus the interpolation errors 

are fed back, coupling the particle perturbations at the wavenumbers k 

The dispersion function therefore contains a sum ovor aliases: 
P 
17-19 

:(k,u) - 1 + ^—   I S2(kp)   dv <♦ £ f cot(u* iO-kp-v)£ 
K (k)   p 

where 

k„ r k - pk   = k - 2 :p/ix  in 1-D, 
P 9 

for im u > 0.   The functions  < and K play the same role for the difference 
2 

equations as does k in E * - ikf and 4TC = - k 9 respectively; in our 1-D 

case K ■ Ax"1 sin k&x, K2 * [(2/Ax) sin j kAx]2 .    For NGP 

S(k) * sin(y kAx)/{jkAx)-, for linear interpolation   s = [sin(l kix)/(l kJjt)]2 

IV. NONPHVSICAL INSTABILITIES 

We now discuss the ability of coherent interaction with the space- 

time grid to destabilize plasma oscillations.    The first examples are in 

an unmagnetized plasma and are due to the spatial grid.   A variation of 

the model.proposed by Lewis,should improve the stability.    Then we give 

an example of instability due to the time sampling in a magnetized plasma. 

1. SpaL  il Grid Instability 

Since the time integration is not a part of the instability mechanism 

let us assume continuous time.    Also for simplicity we consider a one- 

dimensional system. 
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The feature of the oscillations which is central is that plasma 
17 18 perturbations of different wavelengths are coupled together.    *      This 

can be thought of as a parametric interaction in which the spatial grid 

plays the role of the pump.   The pump wavenumbers are k   and its harmonics 

pk ; the frequency is zero.   As a result plasma perturbations characterized 

by (u»k =k"pk ), pintegral, are coupled and in the dispersion relation we 

had a sum over all these sub-modes.   The coupling strength is given by 

S (k ); and is weaker for linear interpolation than the less accurate 

nearest-grid-point. 

There are now many wave phase velocities w/k   with which particles 
P 

may resonantly interact. Unless the coupling is very strong there is no 

qualitative change in Ree for real u; in particular the sign of its 

derivative is unchanged. This need not be true for the imaginary part 

17 13 so that the plasma stability may be changed. *  Reference 17 gave values 

for UJAX/V. and kAx for which Im c had the wrong sign for a Maxwellian, 

showing that a clearly nonphysical instability could occur, but incorrectly 

stated triat this was not possible for wavelengths enough larger than Ax. 

Reference 18 gives w-k plots for two Maxwellian cases, one stable except 

for very weak growth at small kAx, the other strongly unstable at kAx;Tr/2. 

We now explain these results and come to additional conclusions. The 

dispersion relation is periodic in k; we will keep k < k /2 (i.e., in the 

first Brillouin zone), which is the k one would think of physically. Then 

the physical phase velocity cu/k is larger than the alias velocities 
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w/k ,p ^ 0. Thus w/k may be much larger than v., leading to negligible 

Landau damping, at the same time that the slow waves ?xe Interacting 

strongly with the thermal particles, as shown in Fig. 2.If kv{ > u. 

The contributions from waves with equal jpj nearly cancel; the net effect 

turns out to be destabilizing. Although it is small for small kAx 

(being «(kAx)2 for NGP and (kAx)4 for CIC-PIC), the Landau damping of 

the principal wave goes to zero even faster as k + 0. Thus the grid can 

destabilize oscillations even with wavelengths » Ax. 

For XD>Ax/2 the alias wave velocities fall on the flat part of 

the particle velocity distribution, and Landau damping occurs unless 

kAx < 2k\p 1s small. Therefore, the instability is confined to long 

wavelengths and is very weak. 

When XQ - .IAX the lowest and strongest aliases interact with 

the steep sides of f and there is little Landau damping even for kAx . 2 

where the coupling is strong. The result 1s a strong instability; Im u is 

as large as 0.1 w„ for NGP and 0.014 u> for CIC-PIC. 
P P 

If XQ/AX is decreased further only the weaker, large p aliases 

contribute and the instability goes away; as it should since, of course, 

a cold stationary plasma Is inactive. 

If the plasma is drifting through the grid at about the thermal 

velocity the lowest aliases can lie on one side of f so their contribu- 

tions will all have the same sign, eliminating the near-cancellation at 

small kAx. Thus the instability should be significant for larger values 

of XQ/AX than for the stationary plasma. Recently, 1 became interested 

in electron beams, so I looked at the simplest case, that of an electron 

beam in a fixed ion background, moving relative to the grid. This should 
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be stable.   The dispersion relation 1s now 

2 

P '■^"■^i^fc? 
For any fixed k the dispersion relation has a structure similar to that 

for many beams. One difference 1s that the effective plasma frequency 

for half of the "beams" 1s negative. The particles all react strongly when 

the Doppler-shifted frequency u -kv 1s near a harmonic of the grid crossing 

frequency kgvQ. 

One can show that there are two roots corresponding to each alias 

term 1n the sum above. The roots are either real o>- occur \n conjugate 

pairs. 

In Hg. 3 we roughly plot e for small kAx. One sec; easily the 

pairs of real roots associated with p=0,l and p<-2.For each of the other 

resonances there 1s a pair of complex roots, one unstable. For larger 

Ipl the modes are highly resonant and therefore hard to excite and also 

easily destroyed by any dissipation or spread in resonance, e.g. if 

kkpv0l < |kpvtl . 

The growth rates from the p*-l and 2 modes, and from p»l at larger 

kAx, are very substantial. In numerical solutions for v =0.12 Ax u we 

found a growth rate of .017 w at kAx = 1 for p»l, and a maximum growth rate 

greater than .22 w„ at kAx » 2.2. 
P 

The only way to eliminate the aliasing in a simulation model 

using a spatial grid is to use band-limited interpolation, but even linear 

Interpolation 1s often Inconveniently expensive. Another possibility 
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*1      «/K2 

Fig. 2.   Alias vave phase velocities-UA   and f(v) for k v      „ 
* g t        ; 

«/k 

g t -"p • 

p = 2       p = l P = 0      p = -l     ps.2 

Fig. 3-    Sketch of   c(k, u>  ) vs.   w       for a cold bea». 
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Is to change the sign of the coupling so that the Instability goes away. 

A model which does this In some cases has already been proposed by Lewis, 

though not with this 1n Rind.9,20 He shows that a simple modification 

makes the model Hamlltonlan; one calculates the particle force as 

F(x) - - JL 

This can be computed quickly (the gradient of S 1s done analytically). 
18 

The dispersion relation for the MaxwelHan 1s now 

\ 

Ä vt    P fl knvt p t 

Examination of Im e shows that now each alias contributes to damping. 

Thus the nonphysical Instability 1s now nonphyslcal decay; this will 

usually be preferable. 

If the MaxwelHan Is drifting an Instability 1s again possible, 

but the aliases partially cancel instead of adding as they did earlier. 

Thus an Instability 1s expected to be weaker. 

For the cold drifting beam we now have 

., 2 k 2 

•'•*-! MpV 

In a plot slmlHar to F1g 3, e * - » at the alias resonances.   One 

expects no Instability for small kAx when k v   > m .   Faster drift may 

be needed to avoid Instability for larger kAx. 

To the extent that Lewis' models still conserve energy when At 1s 

finite, the growth of an oscillation 1s limited by the available 
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kinetic energy.   This 1s not true In the normal model, in which total 

energy Increased by a large factor ir. Okuda's observations of a strong 

grid Instability.13 

2.   An instability In the time Integration. 

The difference equations 1n time are equivalent to differential 

equations with appropriate time-dependent dynamics.   The "pump" now has 

infinite wavelength and frequency u   = 2ir/At.   The interacting waves have 

the sane wave vector and frequencies which differ by harmonics of ->> . 

We have so far found no interesting instability in the i.nmagnetized 

time integration, so we turn to the magnetized case. 

For propagation across the magnetic field at wavelengths - Larmor 

radius there are waves at harmonics of the cyclotron frequency.   Both 

w At and w At may be small but the cyclotron harmonic frequency may be 

comparable to ir/At.   This can lead to the simplest example of a non- 

physical cyclotron harmonic instability, involving interaction between 

nw ,-nw   and u   when u   = w /2n.   We examine this further, c*     c g eg 

An external magnetic field can be incorporated into the particle 

equations in such a way that the zero-order orbits in constant fields 

are the exact helices plus E x B drift with the correct gyrofrequency u . 

We shall use Kockney's algorithm with B parallel to the z axis.     The 

equation; are 

At 

tarv 
ucAt 

-^ÄT 
V, ,S+i ♦.Vi.S-T 

f,   ♦    ^-^ *_X Vi 

Vs*z Vs" I 
At i'.- ~L±**L* 

At Is^ 
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The longitudinal response Is accurate to perpendicular forces which vary 

slowly or near the resonance frequencies ± » . As a result the dispersion 

function 

fc*0■1 + ^ J dM J»2("=r} ^ cot(w"kzv2 ■ ^f 

.(U!c3f_+k    3f_)  , 
vv±    3Vi       z 8VZ

; ' 

where vL = u   x actual Larmor radius, is the Harris function with the 

19 
cotangent replacement.       Me have Ignored the spatial grid for simplicity 

since it plays no role 1n the following. 

If Aw ■ hä„ + mu   + nu   1s small enough for some integers 1, m 

and n.then the l'th and m'th harmonics have artificially been brought 

close together, opening the   possibility of unstable interaction.   For 

2     2 
an example we choose u At ■ 6*/25 (about 8 steps per period), u   /a>c   - 2 

with kg ■ 0 and a monoenergetic velocity distribution.    (This is done 

to get a more viable harmonic wave, not to create a "negative energy" 

wave.    Instability can exist regardless of what signs the wave energies 

would have physically; only the required sign of Aw is affected.    Even a 

MaxwelHan can be unstable.)   This case should be stable,but the 4th 

and -4th harmonics represent nearly the same phase change (w) per time 

step and there results an odd-even instability with rapid growth, e.g.. 

Im u/w   * .15 at k v,/w   ■ 3.6.   There is also a weaker instability from 

interaction of the 3rd and -5th harmonics. 
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The Instability mechanism 1s little affected by the choice of 

difference equations, but w At must be the gyro-rotation actually produced 

by the difference equations. 

Jack Byers has tried the above example and found good agreement 

with the theory. The wave grew to amplitudes comparable to those for 

real cyclotron Instabilities. A change of u At to 6IT/24 (exactly 8 steps 

per period) eliminated the Instability, also as predicted by the theory. 

For high harmonics the "tuning" is delicate and growth rates 

are small. Thus the Instability is not a problem for small enough At. 

Even if the electron cyclotron harmonic waves are not the object 

of study, If they exist physically then they should be taken into account 

in choosing At. As we have seen, it may not be enough that u At and 

u At be small. ce 

3.  Remarks 

One may wonder why these instabilities, which are so easy to find 

theoretically, have never been reported by people doing computer experi- 

ments. Perhaps there is something wrong with the theory. It is 

worthwhile to do some experiments to see if the instabilities really are 

thsre, and if so what their eventual evolution is. The few cases done 

by Okuda ant* Byers gave good quantitative agreement, so far, on all 

three instabilities. Okuda is reporting these experiments at this 

conference, but I would like to emphasize here also some important 

features. The instabilities were found both in obvious forms and disguised 

as real physics. They do not quench themselves at negligible amplitudes 

but can grow to amplitudes as large or larger than those for real instabi- 

lities under similar circumstances (i.e., of beam and of cyclotron harmonic 
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■odes In the examples given).   Last, but not least, they are harder to 

Iqnore than the rather clumsy theoretical results. 

Possible nonphyslcal Instabilities may be unimportant if there 

Is real Instability with a sufficiently strong growth.   This Is hard 

to judge quantitatively, and besides the nonphyslcal growth rate can be 

large too. 

Although the jxamples have been dealt with In one dimension the 

Instabilities will certainly be present In 2 or 3 dimensions because If k 

Is directed along an axis of the grid the dispersion relation reduces to 

the 1-0 case. 

Sane people have smoothed grid quantities, either directly or 

by suppressing higher modes If fast Fourier transformation Is used In 

solving Polsson's equation.   The aim Is to reduce the effect of the spatial 

grid by suppressing wavelengths .AX.   We point out that this eliminates 

only the most violent Instabilities, leaving Intact the milder but still 

dangerous long-wavelength cases.   This Is because the aliasing arises 

In the Interpolation between particle and grid quantities and therefore 

Is unaffected. 

Since the Instability Is caused by coherent Interaction between 

plasma and grid, one might try displacing the grid randomly between time 

steps.   This 1s fairly easy to do In any direction In which the plasma 

1s periodic. 

Another possibility 1s to use different grid spacing for I and 

E than for p.   This Is not hard if fast Fourier transforms handling prime 

factors 3 or 5 as well a? 2 are used to solve Polsson's equation. 

The Intent Is to break up the feedback of aliases. 
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One could try varying the grid spacing between tine steps. 

Me recommend that some experimental checks for Instabilities be 

«ide on Lewis' models. 

IV. KINETIC THEORY 

Last year we reported some results for fluctuations and collisions 

In which the spatial grid was taken Into account exactly but the effects 

of finite time step were Ignored. Those results were extended to Include 

19 
finite time step, for an unmagnetlzed plasma. 

For simplicity our expressions a*-e for only one (mobi e) species. 

This can oe remedied by adding summation over species where needed. 

1. Fluctuations and Noise. 

We now consider a stable ensemble of syiser« such that Its averages 

are Independent of wher» and when they are taken, i.e., i uniform and 

stationary (constant) ensemble. This will mean that the ensemble average 

of the field, say, at some x and t vi'll be zero. However, due to the 

finite particle density, a given realization fror, the ensemble will 

certainly not be uniform or field free. Thus, averages of products 

can be nonzero.  We find for the charge density fluctuation spectrum 

2irn.e' 

The fluctuations of other grid quantities are related in a simple 

way. For instance 

(EEJ. - (£)2 a ;P
2)k w 
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All averages approach their real plasma analogues smoothly when 

Ax, &t are taken to zero in any manner, holding other parameters constant 

2.     Velocity Diffusion r..ti IVag. 

He first calculate the effect cf a fluctuating field on the 

velocity distribution of the particles moving through it. 

We find a diffusion in velocity given by the tensor 

*>-$!?*®»*i 

Here and in the following the k integrals imply an Infinite system. 

18 
For a finite periodic system they are replaced by sums over all modes 

except the k ■ 0 mode. In addition, the fluctuations produce a net 

average force (drag) which pulls the particle velocities towards the phase 

velocities of the strongest waves. This turns out to be 

Jflyet ■ 3v -*fc) 

The remaining source of drag is due to the distortion of the 

surrounding plasma by the test particle. We obtain 

t   dk  4ne K  ,      . 

(2") 

3.     The Kinetic Equation and Collisions. 

If we combine the*e results into a Fokker-Planck equation for 

f(v) -c obtain the computer simulation plasma kinetic equation: 

\ 

\ 
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Ä.l^L»  f *V*W,  fr 
* * "o J<2*)3 pp' Ictk.Jtp.^l2 IC* 

21 
This formidable result reduces to the Balescu-Lenard equation 

(Itself vtry complex) In the Unit of small AX and At. Intermingled 

here are normal collisions modified by the force smoothing '  plus 

all the other qrid effects such as stochastic heating from the grid 

noise.  There do not seem to be any nice approximations to make in 

the Interesting cases, but there are several physical features which can 

be seen analytically. 

4.  Exact Properties of the Kinetic Equation. 

21 
After deriving his kinetic equation, Lenard  considers several 

conservation principles and Inequalities which are true microscopically, 

and the H theorem. His kinetic equation Is found satisfactory In all 

these respects, ye begin by making the same checks on our kinetic 

equation. It can be shown that phase space density f remains positive, 

and average particle density and momentum »rt conserved—as they should 

be since the models conserve then exactly. 

However, we know that energy is not conserved exactly, and 

indeed we find we can make no general statement about energy here. (To 

the order considered the rate of change of total energy is just the rate 

for kinetic energy.) we leave the question open for the moment. 

"«■"P 
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For the H theorem we find 

H < 0 

with equality not possible.   Thus, there Is no stationary f, not even 

the Maxwellian!   This remains true In one dimension or when either AX or 

At 1s separately set to zero.   We can say the space-time grid creates 

entropy even for a plasma which should have the greatest possible entropy 

for the given density, momentum and energy.   Since ft is then an extremum 

the only way It can be changing Is If a constraint 1s changing.    In this 

case It must be that the energy Is increasing.    Indeed for the MaxwelHan 

case one can show the energy Is Increasing by the riaht amount to account 

for the change In entropy. 

The H theorem result provides a likely expression to study further 

as something which is due solely to the non-physical heating of the model, 

and which is easily measured in a computer experiment.    In fact, the total 

energy is commonly monitored in simulation codes. 

Me have tried unsuccessfully to see if a distribution which is 

MaxwelHan will remain so, though with increasing spread. 

19 
We have also derived the kinetic equation for Lewis' models.     The 

derivations   follow   those for the normal models very closely with the 

replacements of K by k or aliases thereof.    It is 

4 

o 

3f 
ST «HfcM 

dk 
I 

S2(OS2(k ,)   r 

~p     p2 -KV;-V;-V (2*)J  PP' k(Mp«y)|-    q 

' K^{-P"lv-- ko' — )f<v)f(v') * 3V      -p    3y. -      - 
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where 

e(M -  1 + X-1 S2(kp)| dv kp. f£ $ cotfw+IO-kp.v) $ 

Again following Lenard we can show that f remains positive and 

particles are conserved. Since momentum and energy are not conserved 

microscopically it 1s to be expected that they are not conserved by the 

kinetic equation (except for the energy when At = 0). 

A Maxwelllan distribution which is not drifting is constant In 

the At = 0 limit. Otherwise the H theorem shows that f changes in a fashion 
which increases entropy. 

If f is Instantaneously Maxwellian we can say more about the rates 

of change of momentum, energy and H. We find that the changes in energy 

and momentum have no obvious sign separately, but the combination 

at?(v-v)z>o 

shows that the spread in the drifting frame Is increasing and this Is 

how entropy is increased. 

When At = 0 we can see that v" decreases. Thus, one can say that 

"collisions with the grid" slow the drift, and the velocity spread Increases 

so as to maintain v constant. 

With finite but small time step we still expect the drift to slow, 

or rather to move toward the nearest j«Ax/At since for such a velocity 

the grid looks stationary to the plasma. 

5.  Remarks 

Cur kinetic equations fall to retain a physical property In just 

those case where the model itself does not. Thus, the defects are not 
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1n the kinetic equation but 1n the models, and these microscopic errors 

do nof'average out" to zero as one might hope. Furthermore, these non- 

physical properties are in qualitative agreement with what the normal 

models are observed to do in practice (there is at present no experience 

with Lewis' model). All this lends credibility to the analysis. 

Of course, the results suffer from the same difficulties as for 

real plasmas with regard to the adiabatic hypothesis at small k, and 

are similarly limited to stable systems. However, the large k divergences 

of real plasma theory are absent. 

The results apply equally well to one, two and three dimensions 

with the appropriate adjustment to the k integral. Note in particular 

that the 1-D collision integral does not vanish identically as 1t does 

for a sheet plasma. Therefore, when grid effects become Important 
2 

l-D collision times will be proportional to NQ ■ nxD rather than to NQ . 

Here may be the explanation for the decrease rather than increase in 

12 
collision time observed by Montgomery and Nielson when AX was Increased 

above XD . Unfortunately, they give so little information that one would 

have to repeat the experiment in order to resolve this point. 

Hockney has made the inteiesting experimental observation that, 

as vtAt/Ax 1s Increased from below to above unity, the »atio of heating 

time to velocity scattering time decreases rapidly from well above to 
14 

below unity.  We now venture an explanation. The steps in the reasoning 

are easily identified with steps in the development of our theory, and 

can be verified or disproved by numerical study of the appropriate 

expressions. 
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Consider first the case with very small time step. In the 

fluctuation spectrum there 1s first of all the usual plasma fluctuations 

given by the p - 0 term. This extends up to frequencies of kvt or u , 

depending on kxD, then drops off quickly. There 1s also a grid noise 

component, given by the p f 0 terms, with a characteristic frequency 

2*vt/Ax and falling off slowly aiiove that. This grid noise dominates 

the high frequencies and Is little modified by collective effects as It 

Is above the plasma frequency (assuming 2irAD>Ax, which 1s also desirable 

to avoid the grid Instability). However, the grid noise contributes 

relatively little to "collisions", which are due to phase velocities 

< Vf Thus, velocity space evolution Is fairly normal, with diffusion, 

etc and little heating. 

When v*At > äX the grid noise extends up past the sampling 

frequency 2ir/At, and therefore 1s the same to the difference equations 

as a low frequency and contributes to velocity scattering. There Is no 

obvious reason why the drag should Increase much; if not then diffusion 

dominates and the heating and scattering times will be comparable, as 

Hockney observed. 

However, we feel there 1s no justification at present for Hockney's 

complete rejection of this regime v(At > Ax If the heating time Is still 

large enough, which will depend on the object of study (e.g. plo::.a echoes 

are very sensitive to velocity diffusion). Recall also that other plasma 

phenomena may not be adversely modified at all;e.g. plasma oscillations 

seem little affected.On the other hand if one is studying kinetic theory 

then probably v^At > Ax should be avoided. 
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VI.   C0NCLUDIN6 REMARKS 

In addition to Improving our understanding of the Internal 

workings of simulation plasmas, we believe this analysis can aid resolu- 

tion of several open questions, such as: Hov does one choose the opti- 

mum grid-particle Interpolation to use when the spatial grid 1s coarse? 

What algorithm changes ameliorate the nonphyslcal behavior? In whit 

sense 1s a low amplitude oscillation, using the "ordered start" with a 

finite number of particles, the same as such an oscillation In a Vlasov 

gas? How do we choose Polsson algorithms to make the long wavelength 

fields very accurate while suppressing unwanted short-wavelength phenomena? 

Of course, the situations discussed In detail 1n this work are 

too Idealized to directly support or discredit most actual computer 

experiments. For Instance they are of small relevance to strongly non- 

linear phenomena. One can hardly do the simulation theory when the 

corresponding "real" plasma theory 1s Intractable. But I do hope to 

have convinced you that computer experiments can turn out very badly, 

sometimes In a deceptive manner, and I hope to have sensitized you 

to some of the circumstances which can cause this to happen. 

Furthermore, I believe these circumstances will be much harder 

to avoid 1n the future, e.g., In three dimensions where the spatial grid 

will be coarse, and when disparate time scales make the time step large 

for some phenomena. 

These models, even more than computing hardware and software 

in general, are highly fallible. No one will anticipate all dangers and 

compile a catalogue from which one can obtain unambiguous guidance for 

experiments. But one can apply at least as thorough checks as either 

\ 
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the laboratory experimentalist or the theoretician. The common check 

of repeating key experiments with different äX and At, ate. helps som. 

It also helps to have an Independent check, a closely related situaiL. 

with behavior understood by some other means, e.g., the linear theory 

for the low amplitude behavior of the situation Is often very useful, 

If available. Other simulation methods, such as Integrating the Vlasov 

equation Itself, will be useful. 

Under the present circumstances, it would seem that anyone 

reporting computer experiment results should Include information on the 

spatial grid, time step, Initial conditions, etc., am their effects on 

the results. The onus 1s on the author to show that he is presenting 

physics and not numerical artifacts. 
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Noise Suppression Techniques in Macroparticle 
Models of Collisionless Plasmas' 

J. A. Byers 
Lawrence Radialion Laboratory 

University cf California 
Livermore, California 

ABSTRACT 

Noise reduction techniques are examined as 

applied to macro particle computer models of col- 

lisionless plasmas. The quiet start technique« 

particle weighting, and the usefulness of forcing 

the system to a linear one are discussed. 

•Work performed under the auspices of the U. S. Atomic 
Energy Commission. 
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Macroparücle Model 

i.      aasBsaa 
He emphasise, in this paper, noise elimination or reduction 

techniques M applied to macropartlcle Models of collisionless 

piss—. We tske the view that we are really interested in an 

absolutely eollisionless system and that we desire a solution of 

the Vlasov equation, discretized though it say be. Choosing the 

macropartlcle concept as a basic starting point, we first of all 

would like to stop thinking of our United number of particles as 

au extremely poor plasma (very low number of particles per Debye 

length) with all the attendant enhanced kinetic properties such as 

fluctuations and collisions. Rather we take the view that the 

particles are discretized elements of a continuous Vlasov phase 

fluid, lhe goal is to obtain, with a manageable number of parti- 

cles, a model which approaches as closely as possible a Vlasov 

plasma, i.e., a true continuous system. Results presented last 

year employed for the first time a technique of noise suppression 

in macropartlcle models that has acquired the name "quiet start". 

The technique allows one to suppress to a near zero level the 

natural fluctuations expected from a finite set of particles near 

an equilibrium state, thus for a finite amount of time the quiet 

start technique has repressed all observable kinetic effects. Of 

course, our system is still a discretized one and will eventually 

run into coarse graining problems and the only recourse is to ob- 

tain finer resolution, i.e., increase the number of particles. 

But the coarse graining problem is common to all discretized 

\ 

\ 
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models. It Is our main point that the quiet start procedure has 

allowed our (admittedly grainy) collection of particles to behave 

for a finite amount of time precisely as a true continuous system. 

That is, there are no observables that might be ascribed to fluctu- 

ations! or collisions! phenomena. Once the system has started to 

become too coarse grained, it is still perhaps a moot point whether 

one should describe the coarse graining effects in terms of enhanced 

collisions or enhanced fluctuations. The system has arrived at 

this state precisely as a true continuous system, and, while the 

further development will undoubtedly be affected by the coarse 

graining, one can still claim a better representation of the con- 

tinuous solution than a code that allowed the collisional- fluctua- 

tional phenomena to be present from the beginning. It is clear 

that these remarks are particularly relevant for problens »here 

only a small part of the phase fluid becomes heavily dlstc jsn. 

The undlstorted parts of the phase fluid will continue to act in 

an ordered manner as a continuous system and will contribute 

nothing to fluctuational or collisional phenomena. In this paper 

we examine the quiet start techniques and other methods of noise 

suppression. 

II.    QUIET START 

The essence of the quiet start technique is to load the 

initial values of the particles' phase space positions uniformly 

along the equilibrium orbits and, in addition, to smooth out all 

wavelengths equal to and smaller than the repetition length, 

I 
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defined as the distance over which the velocity distribution re- 

peats. One obtains an ordered regular pattern in phase space. For 

example, In the simplest one-dimensional homogeneous system where 

the equilibrium trajectories are simple straight line orbits, the 

quiet start loading produces a number of beams. That is, one 

starts with a given total number of particles, IP, which are to 

represent some f(v) over the system length L. One first chooses 

some small fractional part of L over which it is determined physically 

sensible to smooth the charge density. Call this length H— this is 

the repetition length over which we will repeat our representation 

of f(v). Then, instead of using HP different velocity values to 

represent f(v), which would result in the usual fluctuation level, 

we use only HP/(l/H) ■ HV. In each distance H we represent f (v) 

with only HV different values of velocity and in each succeeding 

length H we again represent f(v) with the same HV values of velocity. 

For each value of velocity used w« have i/H number of particles 

and, since we smooth the charge density over distances < '. each 

such set of particles will appear as a continuous beam. How, for 

computational efficiency, the smoothing is applied to the charge 

density, I.e., to the collection of all of the particles with dif- 

ferent velocity values. But, since each velocity value is represented 

by a uniform-in-»pace set of particles, the smoothing applied to 

the collection of all the particles also will smooth each set of 

particles with a particular value of velocity Into the appearance 

of a continuous beam. It is clear that the unperturbed motion of 
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a continuous beam will result in no fluctuation. In practice the 

codes give proof of the success of this idea by producing fluctua- 

tion levels of an undisturbed system corresponding to machine round- 

off levels. Also the real frequencies and growth rates predicted 

by linear Vlasov theory are reproduced within the precision of 

measurement. For spatially homogeneous problems, the technique 

works equally well for any type of equilibrium orbit, and the ex- 

tension to 2 and 3 dimensions is also quite straightforward. 

The quiet start occasionally produces problems of its 

own that threaten to ultimately produce a noise le-el comparable to 

that produced by a random sxart. For the simplest cne dimensional 

problems with straight line orbits one has a multibeam representation 

of f(v), and as is well known such a distribution is subject to 

multibeam instabilities, They appear not to be troublesome in cases 

where f(/) itseli is subject to a sufficiently strorg instability 

of its own, but in more subtle cases one can expect multibeam phenom- 

ena to become apparent in times on the order of l/^Av), where  Av 

is & typical beam separation. Dciiavit and Kruer have recently 

(unpublished work) clearly identified a multibeam instability in a 

quiet start and were able to cure the problem v randomizing only a 

few of the beams; the majority of the beams were left in an undis- 

turbed state, and the noise level indi.ced by the randomising of a 

few bears was much reduced over that of a fully random start. This 

technique, as successful as it was in this particular case, clearly 

requires knowledge of which beams to randomise, something that is not 
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likely to be known in more complicated cases.   What is clearly 

needed is a smoothing technique that is applied to all of the parti- 

cles and is capable of smoothing out the fine grained multibeam 

phenomena while leaving the coarse grained phenomena relatively un- 

disturbed.   In fact, Denavit (unpublished work) has recently been 

working on a technique whereby periodically (not every time step) 

a new smoothed f(v) is established and a new set of particle posi- 

tions and velocities chosen to represent the smoothed f(v).    Initial 

results were very promising and the usefulness of the techn que now 

seems to hang on l) its computing economy and 2) long term effects 

of the smoothing on the desired coarse-grained phenomena. 

III. BUCTICUS WEIOHTIBO 

It also proves extremely beneficial from a noise reduction 

point of view to use particles of different charge (and mass) values 

so that the resolution can be focusred on that part of f(v) that is 

the most active.    This is not a new suggestion and probably is now 

widely used, but,  in our opinion, the use of particle weighting has 

overwhelming advantages in certain problems, and we want to emphasize 

its usefulness as a noise reduction technique.    An obvious algorithm 

for any given f(v) is to 1-ad the particles in velocity space uni- 

formly and then apply a wieghting factor % f(v) to the charge and 

mass of each particle, thus producing equal resolution over all 

velocity space.    The modifications required to concentrate the 

resolution in special velocity regions are straightforward. 

We now discuss several examples of computer simulations 
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for one-dimensional homogeneous problems using the quiet start com- 

bined with various weighting procedures. For a test of landau 

damping the particles were loaded uniformly in veloci y and a weight* 
o 

ing factor exp(-v ) produces the desired f(v).   We oltain a clean, 

accurate landau damped signal for several cycles until reaching a 

noise level that is a function of the number of particles used. 

See Fig. 1. 

A second example is the simulation of an instability caused 

by a very low density («^/^  «   1) cold beam at seme   v» v     super- 

imposed on i Naxwellian plasma.    The important weighting procedure 

in this case concerns the beam particles; an equal number of particles 

arc used to represent the beaii and the main plasma, so we have a 

good resolution of the beam which is the active region of velocity 

space, despite the very low relative density of the beam.    Similar 

resolution without the veightlng procedure would require n„'nb 

more particles, in some cases an extremely large factor. 

A third example is the simulation of an unstable bump-on- 

tail distribution, f(v) = exp(-v2) + .0^ exp(-(v - 3)2).    Tne 

system is ten times as long as the wavelength of the fastest 

growing mode, and we have three or four nodes with phase velocity 

In the positive slope region.    Here again we load the particles 

uniformly and weight the particles in order to achieve the desired 

f(v).   Without velghti: - the particles, equivalent resolution of 

the beam region requires approximately 20 times as many particles 

(2 x 10   compared to our 10 >.    The absence of quiet starting causes 
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Figure 1.   landau Damping Test. £ vs. time. 
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high initial amplitudes in all the modes of the system, including 

those with phase velocities outside the positive slope region. 

In contrast, the >iuiet start run had precise control over the 

initial amplitudes and phases of all modes and for this case the 

system was perturbed at very lev energy so that at saturation time 

the only large amplitude modes present are those with large linear 

growth rates. It should be clear that particle weighting is parti- 

cularly useful in any problem where a low density region of velocity 

space is crucially important. 

IV.     EXTENSIONS TO IMHOMOGBMEOUS PRCBIEMS 

For homogeneous problems with other than straight line 

orbits, it is not quite fair to state that the essence of the quiet 

start is the uniform loading of the equilibrium orbits. Rather it 

is the uniform loading, for each particular value of velocity, in 

configuration space coupled with the smoothing that achieves the 

desired result. For inhomogeneous problems, one naturally cannot 

load uniformly in the inhomogeneous direction(s), and one must rely 

entirely on uniform loading of the equilibrium orbits. Trie degree 

of success for inhomogeneous problems seems to depend on the details 

of the particular problem, such as the degree of complication of 

2 
the equilibrium orbit. See the work of Birdsall and Harding and 

Berk-3 for the two recent applications of the quiet start to inhomo- 

geneous problems. 

We are presently examining some further extensions of \he 

quiet start concept to inhomog neous problems. First, one woula 
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again load the particles uniformly on the equilibrium orbits and 

then attempt to smooth the data with reference to these orbits, 

in the spirit of the concept as applied in homogeneous problems. 

She data would first be charge shared between neighboring equilibrium 

orbit "grids", the smoothing would then be done on each of these 

grids with the aid of the fast Fourier transform and the smoothed 

transformed data would then be transformed back to configuration 

space. The concept appears straightforward but may well require 

an uneconomical amount of computing effort, since the above 

smoothing steps must be carried out for eac> equilibrium orbit 

"grid". The concept has not been tested. 

k 
Harding and Berk have suggested the use of moving back- 

ground particles to ensure the eance' lation of equilibrium fluctua- 

tions. Tne concept has not yet been fully tested. 

V.      LUEAR THEORY via MACROPARTICLE SIMULATION 

A technique similar to the latter suggestion, which we 

have tested in homogeneous problems, is to force the system to a 

fully linear one, i.e., integrate along the equilibrium orbits and 

accumulate only the perturbation charge censity . This naturally 

ensures absolutely no noise fluctuations due to equilibrium oroits, 

regardless of finite difference errors, but of course one is limited 

to tho linear regime. Besides the noise reduction, however, there 

is an additional major advantage of this technique first pointed 

out by J. Freidburg . One can bring in tr>* effects of any homogeneous 

direction simply by assuming an exp(iky) dependence where y is the 
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homogeneous direction. One need resolve the f(v) only at one re- 

presentative y plane, with all particles contributing to the charge 

density as exp(lky). One has the requirements of following one 

equilibrium orbit and two linearized orbits (to get amplitude and 

phase information) for each value of velocity used, but this is a 

minor price to pay for the reduction of the dimensionality of the 

problem. 

Despite prior publication of the concept , we believe some 

more detail of the technique deserves exposition. We first 

linearize the equations of motion for each particle 

x = xo + Xl 

x represents the equilibrium orbit and can be as simple as pure 

one dimensional streaming motion, X = 0  , or as complicated as 

one desires. X7 represents the deviation from the equilibrium 

orbit. The first crucial point is that X, does not change as X. 
o l 

grows,  in fact the magnitudes of ^ and X. are completely independent 

as they should be in a linear system.    The second crucial point is 

that X    is calculated at the current position of X .    That is 

*1    -   m El <V 

The charge density is then obtained only from the X 

ni - -i Kzh> 

The above changes to s particle code actually make It 

computationally more involved.    One has to follow the equilibrium 

orbit as well as the deviation.   Also one has lost the possibility 

of exploring nonlinear behavior; the system is fully linearized and, 
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for example, an instability will not saturate but will keep on 

growing.   The perturbed quantities amplitudes have ro relation to 

the magnitudes of equilibrium quantities.   The gain has been an 

apriorl rejection of the ordinary type of noise due to fluctuations 

of the equilibrium orbits. 

A second major gain is available if the problem is spa- 

tially homogeneous.   As stated above one then can transform all 

perturbed quantities as exp(lkx); the problem will then be solved 

for only one value of k.   One treats all perturbed quantities as 

sinusoidally distributed in x.   This requires two quantities for 

each perturbation particle, an amplitude and a phase.    In practice 

we represent this complex particle as two real particles, X   and 

X-, located 90° apart In X .   The real and imaginary parts of the 

displacement then are 

RX   -   Xx cos(kXQ)   +   X2 cos(kXo +   | ) 

IX   -   -Xx eiQ(kXo)   -   Xg sln(kXo + | ) 

The contributions to RX and IX are summed up from all of the parti- 

cles and the perturbed electric field is trivially obtained from 

the resulting dipole density.   As an example of the technique we 

present results from a simple problem of some current interest. 

The problem is a spatially homogeneous two species plasma being 

driven by a spatially homogeneous external electric field, EQ cos(»o t), 

where   u     *v»   u       .    The transformation technique reduces this 

spatially one dimensional problem to a problem of resolving only 

velocity space.    Only 200 particles were used in obtaining the 

results of Fig. 2. 
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Nonphysical Instabilities in Plasma Simulation 
due to Small XD/Ax 

Hideo Okuda* 

Department of Electrical Engineering and Computer Sciences 
and the Electronics Research Laboratory 

University of California 
Berkeley, California 

Abstract 

Plum* computer experiments have been performed with a one-dimensional 

particle model in order to understand a nonphysical instability due to the 

use of a spatial grid.    A violent instability was observed with the theore- 

tically predicted growth rate of u./u     s 0.1 for X^/ti x - 0.1 with the 

Nearest Grid Point (NGP) model, where A_ is the Debye length and u x is 

the grid site; in addition, when the field energy reached several percent 

of the kinetic energy, the total energy began to grow rapidly, violating 

conservation.    The growth rate was reduced either by using linear interpo- 

lation of charge and force (CIC.PIC) or by increasing the Debye length 

with the NGP model.    The experimental results are in good agreement with 

Langdon's theory. 

*Present addressi Princetcn University, Plasma Physics Laboratory, 
P.O.Box 451, Princeton, New Jersey 08540. 
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I. Introduction 

This paper presents several experiments which verify a nonphysical 

instability in a simulation plasma due to the use of a spatial grid «s 

* 2 
predicted by Lindman'*' and Langdon . Langdon predicts that wVm the Debye 

length is small compared with the grid size, the coupling among pertur- 

bations with different wavelengths, called aliases, can destabilize plasma 

oscillations, even in a thermal plasma (uniform in space and Hazwellian 

In velocity, hence physically stable). The predicted growth rate of the 

instability has a maximum of u)/<i>  a 0.1 at k A x a ir/2 for X_/A x » 0.1 

with the NGP model.3 

The use of a spatial grid in plasma simulation with particles is now 

widespread, and there is a general inclination to economize, using coarse 

time and space grids and zero  order (NGP) or first order (linear) lnter- 

4   5 
polations (CIC ;PIC ) for charge and force assignments. It is Important 

to understand the effects of such time and space grids and Interpolations, 

especially in the enhancement of nonphysical noise or instabilities in 

order to distinguish physical information from nonphysical information. 

Theoretical investls«.ilons have been carried out extensively toward this 

direction by Langdon. 

II. Experimental results 

The particle model used Is a one-dimensional electrostatic system 

with periodic boundary conditions described elsewhere in detail. The 

electrons move and are loaded Initially uniformly In space; the Ions are 

assumed to be immobile with uniform density. The parameters are lifted 

in Table I. The Initial velocities were chosen to produce the Maxwellian 

2   2 
distribution function, f(v) - exp(-v /2v )//Jir v . In experiments 1,3, and 4 
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Table I 

Parameters of the Experiments 

experiment Debye 
length 

Interpolation 
scheme 

length of 
one period 

L 

thermal 
velocity 

Vt 

total no. of 
particles 

N 

predicted 
linear growth 
rate, ^/w^ 

(aost unstable 
■ode) 

1 0.1 NCP 8 0.1 316t 0.1 

2 0.1 NGP 20 0.1 4000 0.1 

3 0.1 CICPIC 8 0.1 2376 0.013 

4 0.2 NGP 8 0.2 3168 0.03 

tine step of Integration u. At -0.2 

length of run (all exp.) ut - 40 

Ax - 1 

u  - I 
»• 

-v 
".he velocities were chosen from a uniform distribution of F(v)-J f(v) dv, 

o 
with the same velocities used in each spatial cell in order to produce a 

g 
noiseless (or quiet) start ; in experiment 2, F(v) was uniform but for all 

of the particles used with x,v uncorrelated (randomly related), so as to 

have all modes initially excited. The Debye length is defined as X ■ 

v An . Except for the third experiment where the CIC.PIC model was used, 
t pe 

the NCP model was used throughtout the experiments. 

Experiment 1 

3168 particles (sheets) were arranged into 32 groups each with 99 

particles. All groups have the same Maxwell velocity distribution. A 

small modulation in velocity space was added to the Maxwell distribution 

\ 
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to «reit« the ••coed mode (X - L/2) which is eh« most unstable mode in 

the pmnt model; with the uniform initial loading being essentially 

noiseless, the initial modulation was found necessary. 

Kg. 1 shows the evolution of the Instability in phase space at 

different time steps. The field, kinetic and total energies with the 

development of the instability are given in Fig. 2. A small modulation 

emerges at the early time ateps, which is due to the initial modulation. 

The growth rate Oa./w  a 0.1) and the oscillation frequency (<*_/<■>_ x   pe r pe 
8 0.78) of the second modi are in good agreement with the linear theory. 

The modulation continues to grow and becomes appreciable at at 3 20 which 

is about three plasma periods. At this stage, the field energy reached 

several percent of the kinetic energy and the total energy itself begins 

to increase appreciably as shown in Fig. 2. After thie stage, the energy 

continues to grow without appreciable saturation or limiting. Hear the 

end of the calculation (« t 9 40), the kinetic energy reaches several times 

its initial value, resulting in the increase of the Deo>» length by factor 

two and reduction of the growth rate. However, the catastrophe has already 

taken place. Higher spatial harmonics are generated with the development 

o" the instability as seen in Fig. 1. 

Experiment 2 

In order to see the effects of the change of the initial conditions, 

especially, using a random loading in phase space and also to see the 

effects of many Fourier modes, we tried this second experiment as shown in 

the table. Particles are distributed uniformly in x and randomly in v 

according to the Maxwell distribution. As will be expected, all possible 

Fourier modes were excited initially and the development of each mode was 

observed. 
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Phose-spacc distribution 
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Fig.l - Evolution of a grid instability in phase apace for a Maxwellianplaama. 
A quiet start with a email perturbation to the second mode was employed as 
the initial condition. A-/4x = 0.1, NL- » 40,and L/a x = 8. Experiment 1. NGP. 
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Fig. 2 - Growth of th« total field (a), kinetic (b) and the total (c) energies with 
time. Field energy normalised by the initial kinetic energy increase« expo- 
nentially with the expected growth rate aid the oscillation frequency. The total 
onergy also increases, showing the nonconacrvative nature of the instability. 
Experiment 1.  NGP. 
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rigs. 3 and 4 show the phase space plot of the Instability and the 

development of the field, kinetic and total energies respectively. Unlike 

Exp. 1, there Is no laitlal modulation for any node, until u t a 20, 

it Is not clear from Fig. 3 whether the instability is developing or not 

except for a gradual Increase of the number of particles with large 

velocities. The field energy increases nearly exponentially with the over- 

all growth rate of u./u i 0.07. After «a t a 20, bunching of particle 
x pe pe 

density can be seen clearly with the corresponding wavelength roughly 

equal to the 5  or 6  modes of the model, the most unstable modes. 

After the total field energy reaches several percent of the kinetic energy, 

the instability develops just like Exp. 1, again violating the conservation 

of total energy. After «at s 30, bunching of the particles goes on 

rapidly, leading to the development of large amplitude waves. 

Fig. 5 shows the development of energies of the Fourier modes (mode 

3, 4, 5, and 6). The solid straight lines are the growth rate, predicted 

for each mode from liner analysis. The observed growth rates are close to 

the predictions. 

It may be expected that the error arising from the finite difference 

scheme of the Integration of the equation of action will have some effect 

on the development of the instability, especially for very fast particles. 

This was checked by ._.ralng the same experiment with the time step of 

W at *0.1 Instead of 0.2 which was used thoughout the experiments. No 

appreciable differences, such aa the behavior of the field energy and the 

beginning of the increase of the totsl energy at «a t a 20, have been 
pe 

observed up to the limit of calculation («a t - 40). 

So far, we have examined the most unstable situation with «vail Debye 

length with the NGP mod.il. We next show how the instability Is reduced 

or stabilized by smoothing the tteractlon between particles and grid using 

thsr Interpolation or by increasing the Debye length. 
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Phase-space distribution 
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Fig. 3 - Phase-space plot with random initial loading. Many modes are excited 
simultaneously at the initial stage of the calculation due to the initial condition. 
The dominant modes are those whichare linearly most unstable. X_/d x ~ 0.1, 
ND = 20, and L/4 x = 20.   Experiment 2.   NGP. u 
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Fig.4 - Total field energy normalized by the initial kinetic energy (a).kinetic 
(b) and the total energy (c) in the experiment 2. The overall behavior of the 
instability is quite similar to that of exp. 1.   Experiment 2.  NGP. 
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Experiment 3 

Here we consider the case In which linear Interpolation is used for 

charge and force assignment (CIC.PIC). The parameters of the experiment 

are the same as in Exp. 1 except for the total number of particles is now 

reduced to 2376. Linear analysis shows that the maximum growth rate is 

^/u  3 1.3 x 10 , which is one order of magnitude smaller than the NGP 

model due to the smoothing of the interaction. 

Fig. 6 shows the development of the field energy of Fourier modes in 

the model. It Is predicted that the first mode (kA x - ir/4) is very 

weakly unstable (bi./u  3 10~ ) and the second mode (kA x - ir/2) is at 
l pe 

_2 
the maximum growth rate (Iü./ü)  £ 1.3 x 10 ) and the third mode will 

l pe 

Landau-damp. The first and the second modes grow with nearly the expected 

growth rate and the oscillation frequency. (a /u  = 0.94 and 0.77 for 

the first and the second mode respectively). The total energy (not shown) 

was conserved within 0.5 percent up to the end of calculation. Hence the 

growth rate of the instability is quite small for the present calculation, 

the maximum total field energy was 0.2S percent of the kinetic energy and 

this value is not large enough to lead the plasma to blow up. Fourier modes 

are still In the linear stage during the calculation. Although the in- 

stability is quite weak it is expected that the effects of the instability 

will not be negligible for a much longer run. 

Experiment 4 

We come back to the NGP model again and try to see the effects of 

larger Debye length. We consider the case with X^/A x - 0.2 where the 

Debye length is just twice as large as that of Exp. 1. The linear theory 

_2 
predicts that the maximum growth rate is reduced to tu./u  2 3 x 10 . 

i pe 

Fig. 7 shows the development of the total field energy which increases 
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Fig. 6 - The energies of the Fourier modes normalized by kinetic energy in 
the exp. 3 where linear interpolation of charge and force is used. The plasma 
is much less noisy than the NGP model and the growth rate and the oscillation 
frequency of the 1st and the 2nd mode are quite close to the prediction. A_/d x = 
0.1, ND = 30. and L/A X = 8.   Experiment 3.   CIC.P1C. 
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roughly with the expected rate, although the NGP model is much noisier 

9 
than the CIC model as was emphasized by Hockney . The ratio of the field 

to the kinetic energy at the end of the calculation was an order of 

5 z 10*" which is not large enough to lead the plasma to a catastrophe. 

The totzl energy was conserved within one percent in this experiment. 

However, it must be cautioned that if the initial noise level of the un- 

stable modes were high enough, then the conservation of the total energy 

might be violated early in time, within several plasma periods due to the 

development of large amplitude waves as was seen in Exp. 1. 

We have also checked the case with X_/A x « 0.3 and confirmed that 

the growth rate was further reduced to a./u  = 5 x 10  es was predicted. 

III. Discussion 

He have confirmed that a nonphysical Instability can develop due to 

the use of a spatial grid in simulation even in thermal plasma. The in- 

stability can grow to large amplitudes, causing the total energy to in- 

crease. The experiment« show good agreement with Langdon's theory. It is 

important to realize that NGP requires larger X_/ A x so that NGP can deal 

only with *:--iall diameter plasma, while CIC,PIC can go further, crucial in 

two and three dimensional simulation. 
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Optimization Techniques for Particle Codes 

J. H. Orens, J. P. Boris, and  I. Haber 
Naval Research Laboratory 

Washington, D.C. 

I.      INTRODUCTION 

Optimization of computer simulation codes requires a 

balance between flexibility, development time, core require- 

ments, and computational speed.  Codes should be flexible enough 

that minor conceptual modifications do not require significant 

revisions. Similarly, specific machine language programming 

should be used only when absolutely necessary in order to allow 

for machine independence and greater readability. Well known 

optimization techniques can often be applied without severely 

constraining the simulation. For example, requiring the num- 

ber of grid points to be a power of two allows application of 

readily available Fast-Fourier-Transform techniques. Also, if 

constant factors can be scaled by powers of two, shifting op- 

erations can often be used instead of multiplications and divi- 

sions.  Such techniques yield significant savings in computa- 

tion time. Optimization also includes a consideration of data 

accuracy and external-device timings.  It is rarely näcessary 

to calculate a quantity more accurately than the value that it 

is going to update.  Similarly if it is necessary to store 

intermediate quantities on an external device, there is little 
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advantage in optimizing internal calculations to so great a 

degree that the computation time is bounded by the external 

data transfer rate. Following these general considerations an 

electrostatic plasma simulation code, P POWER, was developed for 

solving one- and two-dimensional problems on a rectangular, 

doubly periodic region. A discussion of this code follows and 

some typical applications are presented. 

II. THE P POWER SIMULATION CODE 

Figure 1 is a flow chart for the code. Each block 

represents a modularized segment which is designed to be re- 

placed easily. This allows for independence of each major 

section and flexibility in modifications. The code is divided 

into seven major segments: the initialization section, where 

all paramete s are read in, the particle tables initialized, 

and important constant calculated; the Poisson solver, where 

Poisson's Equation V2<t>= -4irp is solved by Fast-Fourier-Transform 

Techniques; the electric field solver, where the equation 

E ■ -V$ is solved by a difference scheme; the field diagnostic 

routines, where modes of the electric field are available and 

where the electric field energy is calculated both in k-space 

and x-space; the particle diagnostic routines, where the momenta, 

energies, and temperatures of each individual type of particle 

are calculated; the particle pusher, where the particle veloci- 

ties and positions are updated according to a desired scheme 

(e.g., classically or relativistically, nearest-grid-point, dis- 

critized interpolation in cell, etc.); and the charge counter 

routine, where the charge density matrix, p(X), is calculated 

by a scheme corresponding to the type of particle pusher used. 
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The code is designed so that the main loop for diagnos- 

ing, updating, and counting the particles requires only one pass 

per time step through the particle tables. This is extremely 

important when the particle tables are stored on an external 

device and each pass involves the (usually expensive) external 

device timings. When the particles are stared in core, an 

option in the P POWER code, no particular saving accrues from 

the single-pass aspect of the algorithm. However, to ensure 

flexibility, the most restrictive constraints, in this case 

those imposed by external-device buffering, must be satisfied. 

The initialization segment is designed to prepare the 

data (e.g., particle velocities and positions) in a format that 

will facilitate the operation of the simulation code. The par- 

ticles are divided into classes in which all the particles have 

the same charge, mass, drift velocity, thermal velocity, and 

spatial distribution.  Each particle is represented by one or 

two position coordinates and one, two, or three velocity com- 

ponents depending on the physical problem being simulated. Both 

the positions and velocities are represented in an integer for- 
2 

mat and only integer-register operations are used to update 

these particle quantities. The positions are stored in a vector 

form (Figure 2a) in which 32 bits (one word) are used for both 

coordinates, therefore allowing both the Y and the X position to 

be updated with a single integer-add operation. Each coordinate 

is represented by 16 bits without a sign (positions are always 

positive) and the binary point is positioned such that a lost 
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Coordinates). 
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Figure 2b.  Data Structure for Particle Velocities (X, Y, 
or Z Components). 
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"carry" fro« the highest order bit causes the system tc be 

cyclic, A "carry" fro* the highest order X bit does affect the 

lowest order Y bit, but generally is negligible. To facilitate 

the updating of the positions, the velocities are stored as the 

velocity times DT (the tine step). This quantity is represented 

by 32 bits (Figure 2b) of which the highest order bit is a sign. 

The binary point is such that the velocity of a particle that 

travels «ore than half the system length in a time step cannot 

be represented properly. Due to the details of the integer- 

register operation, however, it happens that the positions of 
\ 

such a partible will always be given correctly. If a particle 
l 

is accelerated by more than half a system length per time step, 
\ 

the excess is treated as a negative velocity in a way which al- 

ways takes the particle to the correct position even though by 

travelling through the periodicity in the wrong direction. Thus 

the energy of the particle will be improper but the effect of 

this particle on the system evolution will be correct. 

Depending on the dimensionality of the problem and the 

properties of the simulations, therefore, a particle can be re- 

presented by a minimum of two words (one position coordinate and 

onr velocity component) and a maximum of four words (two posi- 

tion coordinates and three velocity components).  Particles of 

the same class are grouped into records each with a header 

containing all pertinent information about the particles in that 

record (number of particles in the record, charge, mass, class, 

and system size). Thus all records are independent and need be 

stored in no particular order. The independent nature of the 

records is a great advantage when the particles are stored on an 

external device. 

531 

"!■"■■■ 



Orens, Boris, and Haber 

The initialization segment also sets up all pertinent 

constants. These include constants necessary to scale quantities 

to the size of the system and constants to reflect the fact that 

the electric field times q/m times DT squared is the accelerating 

field for the integer velocities. Here constants for external 

electric and magnetic fields are prepared. 

Each time step begins with a solution of Poisson's 

Equation, V2<t>=-4tfp, to determine the electrostatic potential from 

the position of the charged particles. Fast-Fourier-Transform 

Techniques I   '   '    are utilized to solve this equation and are 

highly optimized for a sine and cosine transform, since the charge 

density and potential are real quantities.  Due to the necessity 

of repeated applications of the innermost segments of the trans- 

form routine, they have been written in machine language.  Besides 

periodic boundary conditions, [p(N+X)=p(X) where N is the length 

of the sytem], there are also similar optimized Fourier techniques 

known '  for ieflecti.ig [p(2N-X-l) = p(X)], and inverting 

[p(2N-X-l) = -p(X)] boundary conditions. 

In numerical simulations, as discussed by several 

authors,    t .e binary collision phenomena are greatly en- 

hanced relative to collective plasma phenomena because the simu- 

lation plasmas have many fewer particles per Debye sphere than 

the corresponding physical plasmas.  When slow phenomena are 

being studied which would be collisionless in the actual pro- 

blem under study, very great care must be taken to ensure that 

the simulation is also collisjonless.  Once 4>(k) has been deter- 

mined by Fourier transforms, therefore, two techniques are ap- 

plied to reduce the particle collision frequency. A Gaussian 
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-k2a2 9 11 12 
e    form factor '  '   is applied to the potential coeffi- 

cients and the high-k, short wavelength, potential coefficients 

2 1112 are truncated '  '  (set to zero). This latter correction has 

the added advantage that fewer Fourier transforms need to be 

performed and therefore it also helps in reducing the execution 

time of the code. 

Multiplying by the Gaussiai form factor in k-space 

creates the same effective potential as would gaussian particles 

with a spread in x-space.  Spreading the particles smooths the 

force law thereby reducing the fluctuations (collisions) due 

to close interactions.  Cutting off the large k-value modes 

removes the short wavelength modes where the enhanced fluctu- 

ations are most serious, and thus has the same effect as the 

Gaussian form factor.  Figure 3 depicts the effect of these 

two techniques on the particle shape.  Initially the particle 

-k2a2 has the form of a delta function. After applying the e 

factor the particle would have a Gaussian form and cutting off 

the large value k-modes g^^es the particle shape the ringing 

characteristic of sin x . The effective particle shape is 

further modified, of course, by the use of a spatial grid and 

an interpolating algorithm but these modifications, while in- 

11 13 eluded in the code, are treated in detail elsewhere.  ' 

In order to determine the effect of these techniques 

on the collision rate, "thermal tests" were conducted where 

electrons and ions I i/M = 64, Ti"Tg Jwere drifting at a 

relative velocity much smaller than the acoustic velocity. 
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Figure 3. Shape of a Simulation Particle After Application 

of a e"   Form Factor and Cutoff of Short Wavelength 
Modes. 

534 

/ 

tmm 



\ 

Particle Codes 

This physical situation is stable and the collisions were mea- 

sured by considering the slow-down rate of the relative velo- 

city and the ftocastic heating rate of the system energy. These 
g 

tests are similar to those performed by Hockney for a different 

1800 u"! and the e-folding time for the stocastic heating of pe 

the energy is approximately 20,000 m~l.    Figure S is a table pe 

comparing the results of the series of "thermal tests". It 

is generally evident that increasing the particle size while 

holding the number of modes fixed or decreasing the number of 

modes retained while keeping the particle size constant, de- 

creases both the collision rate (the rate of relative velocity 

slow down) and the rate of stocastic heating. This table also 

notes the case where the correction factor for the electric 

field differencing scheme has not been applied. This correction 

factor allows for a more accurate calculation of the electric 

field, but, due to its roughening effect upon the force law, 

tends to slightly increase the stocastic heating of the system 

energy.  It is evident that very long simulation calculations 

may be made before the collisions begin to dominate, provided 

that sufficient care is exercised in choosing the particle size, 

the mode cutoff, and nX*. 

There are several possible techniques for calculating 

the electric field E(X) from the potential.  In k-space 

E(k) ■ -ik$(k) and this quantity may be inverse Fourier Trans- 
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one grid cell and one quarter of the k-modes were retained. Here 

the e-folding time for the slowing down of the drift is about 
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J *        ? 
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E»<5) • ifefc-ft) + i(06"W + 1^(09-07) 

Figure 6. The Six Point Difference Scheme Used to Calculate 
The X and Y Electric Field, E(X), From the Potential 
*(X). 

formed to obtain E(X).  In general this would require three ap- 

plications of the Fast Fourier Transform routine — one to obtain 

4>(k) from p(X) and two to obtain E(X) from <(>(k).14 Also 

E(X) may be calculated by a differencing scheme from 

f(X). '  *   This method requires only two applications of 

the Fast Fourier Transform Routine -- one to calculate <J>(k) 

from p(X) and one to calculate <j>(X) from 4>(k). Numerous 

numerical differentiation techniques are available foi dif- 

ferencing $(X) to obtain E(X) and generally are faster than 

the extra Fast Fourier Transform necessitated by the first 

method.  In the P POWER simulation code, the second method 

was utilized and a six point difference scheme was chosen to 

solve for the electric field. This scheme is shown in Figure 

6 and is designed such that one correction factor per 

mode  '  can be applied to the potential in order to concur- 
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rently improve the accuracy of both the X and the Y electric 

fields. 

If one evaluates the behavior of the usual two-point 

difference foraula for E and E on the exponential eigennodes 

of the two-dimensional rectangular Poisson Equation, he finds 

that the numerically computed field differs from the correct 

analytical field, found by differentiating the functional form 

of the potential, in both magnitude and direction. The errors 

become quite severe at short wavelength. The six-point for- 

mula used for differencing corrects the direction of E, as 

calculated numerically from $, up through second order. The 

magnitude can be corrected by application of a single multi- 

plicative factor to each of the Fourier coefficients of the 

potential. 

The application of the six-point formula is very 

much shorter than performing the third Fourier transform and, 

in fact, competes with the two-point formula because the 

factor between the central difference and the two side dif- 

ferences is four and can be evaluated by a shift in fast 

arithmetic registers. 

As noted earlier this improvement in electric field 

accuracy creates a small increase in the stocastic heating 

because the inaccuracies of the usual difference formula for 

E tend to be smoothing. 

Optimization of the data structure tends to decrease 

the efficiency in the diagnostic routines since all quantities 

must be converted to an unoptimized form to make them meaning- 

ful. This is not a great limitation as the simulation is diag- 

538 



Particle Codes 

nosed at intervals of many time steps.  Diagnostics should be 

extremely flexible and highly modularized in order that many 

qualities of interest can be readily available. The most 

important consideration has been that all desired diagnostics 

can be done with only one pass through the particle tables. 

This is highly desirable when the tables are stored on an ex- 

ternal device. Typical diagnostics available in the P POWER 

program include kinetic energies, currents, and drift veloci- 

ties for each individual class. Also k-modes of the electric 

field and total electric field energies in both k-space and 

x-space are available. Velocity space (V vs V ) and phase 
A    y 

space (any coordinate vs. any velocity component) are displayed 

for each class in a contour format where each pcint represents 

the number of particles at that point in the space. Also 

graphical display packages can be easily inserted into the 

diagnostic routines. Sometimes certain simulation parameters 

must be varied depending on the outcome of the diagnostics. 

For instance, to simulate "pump out" it is possible to decrease 

the charge of a class as a function of the electric field 

energy while keeping the charge-to-mass ratio constant. Simi- 

larly a time variation of the external electric field is often 

of interest. One significant example is called "charging the 

boundaries", where a k ■ 0 mode, which cannot be self consis- 

tently supported in a periodic system, is externally applied. 

Here the current flux throughout the system is converted to an 

amount of charge building upon the walls of a nonconducting box 

surrounding the computational region. This yields a laminar 
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electric field which opposes the current flow and gives rise 

to plasma-frequency oscillations. This may be called a total- 

current-constant (zero) boundary condition because the plasma 

plus displacement current adds to zero. There are two techni- 

ques for calculating this electric field. One is to use 

Poisson's Equation V'E ■ 4irp, where p is the density of charge 

that crosses the boundary during a sampling time. Solving this 

equation by means of a Gaussian "Pill Box" would then yield the 

electric field. This method is unsatisfactory as it gives rise 

to a violent numerical instability. A superior technique is to 

find the electric field from the dynamic Maxwell equation 
3E 

4irj + -Z ■ 0. This equation is then integrated over the sampling 

1 "5 16 
time to give the desired electric field.  '   This method yields 

quite satisfactory results and Appendix B describes a typical 

"charging the boundaries" experiment. 

Several different specialized particle pushers have 

been developed. Each utilizes the terms of the Lorentz Equation 

appropriate for the specific simulation and updates the veloci- 

ties and positions by a reversible, time-centered algorithm. 

Here the velocities are defined at half a time step from the 

positions and electric fields (see Figure 7). There are avail- 

able two basic integration schemes -- nearest-grid-point 

(N.G.P.)7'8*12 and discretized interpolation in cell (D.I.C.).12 

The N.G.P. technique attributes all charge of a particle to 

the nearest grid point and considers the resultant electric 

field as constant throughout the cell. The D.I.C. technique, 

as shown in Figure 8, divides each cell into a specified num- 

ber of subcells (16 x 16 in the P POWER code) and uses a pre- 
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Figure 7. The Lorentz Equation of Motion and the Leap Frog 
Scheme Used to Update the Velocities and Positions. 
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Figure 8.  The Discretized Interpolation in Cell Sub-Grid 
Scheme (D.I.C.) for Calculating the Charge Density 4>(X) 
and Distributing the Electric Field E(X). 
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calculated set of weights to apportion the charge of a particle 

to the nearest four grid points. The resultant electric field 

is then apportioned in an analogous manner.* Due to the heavy 

use of the particle pusher, it is usually advantageous to write 

it in machine language. Both two-dimensional classical and one- 

dimensional relativistic particle pushers are available. The 

relativistic pusher updates momenta rather than velocities. The 

classical pushers include an electrostatic N.G.P. and D.I.C., 

and a constant B D.I.C. Also a specialized N.G.P. pusher has 

been developed to approximate the effects of a longitudinal mag- 

netic field by suppressing transverse motions of the particles. 

This particular particle pusher was used to simulate anomalous 

1 7 resistivity in the stellarator.   The one-dimensional relati- 

vistic code has been used to simulate relativistic electron- 

24 electron and electron-ion two beam instabilities,  and Appendix 

A contains a discussion of these problems. 

The charge counter prepares the charge density matrix 

p(X) for the following step by one of the methods determined by 

the type of particle pusher used. The charge counter uses the 

NGP approximation when the accelerating fields are being calcu- 

lated Nearest Grid Point and uses the Dlf apportionment algo- 

rithm when the accelerating fields are being interpolated by 

DIC.  In this way the total linear momentum of the system is 

rigorously conserved.  In practice, of course, the charge count- 

ing and particle pushing are done simultaneously while the 

particle positions and velocities are being held in the registers. 

This saves unnecessary fetch and store times. 
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III.    CONCLUSIONS 

The P POWER electrostatic, plasma-simulation code 

has been described in some detail. The methods used are 

largely well known but we feel that the juxtaposition of all 

these techniques into an extremely efficient, flexible, read- 

able code is unique. Since such an important role has been 

assigned to optimization it is fitting to close this paper 

with a few timing considerations. The program has been written 

and optimized for the IBM 360/91, a computer which has roughly 

350 K words of 32 bits each in fast core and a transfer rate 

of 12 lisec/word to or from disk. These transfers can be over- 

lapped with each other and with CPU operations. The 91 has 16 

integer-index registers (32 bit) and 4 floating-point registers 

(64 bit also used for 32 bit).  As a rule of thumb, all register 

operations take .1 usec to complete, including divisions, and 

all stores or fetches from core take .7 ysec.  Thus most pro- 

grams are limited by store-fetch time. 

The Poisson solver solves a 128 x 128 system in .51 

seconds including application of all the form factors, etc.  A 

256 x 256 system takes 2.0 seconds to solve.  The six-point 

electric field formula generates both E and E matrices for a 
* x     y 

128 x 128 system in 0.06 sec and takes about 0.24 seconds for a 

256 x 256 system.  The two-dimensional N.G.P. pusher requires 

5.2 usec per particle while the D.I.C. interpolating pusher 

requires -15.0 usec. These two times also include charge 

apportionment for the electrostatic case without magnetic field. 

A typical 128 x 128 simulation with 64K particles 

takes about 1.2 seconds per cycle, about 1.0 second for phy- 
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sics and 0.2 seconds for overhead and diagnostics. At 

Wpe6t - 0.2, we get 600 u-g"
1 per hour of CPU time. The pro- 

gram runs correspondingly faster on one-dimensional problems 

and the cost of a typical run using external storage for the 

particle tables is usually less than the corresponding run 

using core because the I/O transfers can be overlapped 

with other jobs in the system and because the job charge is 

reduced for the core released by storing particles on disk. 

The largest runs to date were performed on a 2S6 x 

256 system with 200 K particles. With diagnostics and over- 

head the CPU time charged is slightly under 4 seconds per 

cycle. Thus 3 une"' per minute or 180 toDe"
1 per hour can be 

integrated. 
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Appendix A - Simulation of Relativistic Electron-Electron 
and Electron-Ion Two-Stream Instabilities 

Development of a one-dimensional electrostatic relativis- 

tic code has enabled us to investigate cold electron-electron 

and electron-ion two-stream instabilities for beams with 

24 
drift velocities near the speed of lignt.   In this one- 

dimensional limit the electric field and particles decouple. 

The fields are unaffected by retardation while the 

particle velocities are constrained by c. We have examined 

growth rates and maximum electric field levels for the range 

of cases where the drift velocities vary from much smaller 

than the speed of light to about .95 c. We have also con- 

sidered the case where both beams have been given an addi- 

tional equal relativistic velocity in the perpendicular 

direction. Similar experiments have been conducted by 

18 another author  , and the results, in the limit of no perpen- 

dicular velocity which he considers, agree quite closely. 

Figure 9 is an analysis of the linear dispersion for 

both the electron-electron (e-e) and the electron-ion (e-i) 

cases.  It is evident that the dispersion relation is identi- 

cal to the classical version for cold beams with a redefinition 

of the plasma frequency. This dispersion relation has the 

desired property that it is Lorentz invariant along the direc- 

tion of propagation and therefore the choice of a coordinate 
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DISPERSION       RELATION 

where       11 j - —is;— 

«ft defining Q*= U*(i - ^)(l - %V 

= I; Of 
f-(w-ku„)« 

For two beams (e-e) where    Q,= Q2=Q   and  u„1=-u,„= u„ 

unstable   for most  unstable   mode 

k*u« k'uÜ     3 y    -ü 
Q»   " 4 "" " 2 

For two beams (e-i) where    Q?«Qi,   u„,= u„ end   u„,= 0 

most  unstable  mode 

k«uf, 
)u4(*)'0. 

Figure 9. Anal/sis of the Linear Dispersion Relations for 
a Relativistic Electron-Electron (e-e) and a Relativis- 
tic Electron-Ion (e-i) Two Beam Instability. 
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system is not critical. Calculation of the band of unstable 

modes and the most unstable mode follows analogously to the 

classical solutions. 

Three electron-electron simulations were considered. 

For each case c and ux were changed with the constraint that 

Q and UII be the same for all experiments. By keeping Q and 

UII constant, the band of unstable modes, the most unstable 

mode, and its growth rate should be the same for all three 

cases. Figure 10 shows the graphs of energy vs. time for the 

most unstable mode in all three simulations. The first plot 

is for a classical case, the second is for a relativistic 

case with only a parallel velocity, and the third is for a 

relalivistic case with both a parallel and perpendicular 

velocity. All three simulations have the same most unstable 

mode and similar growth rates as expected. The experimental 

suits and theoretical predictions agree quite closely. The 

maximum electric field for e-e interactions is predicted to 

be: 

rau. 

»    Ji     2,2 
efl-u /c 

This equation may be viewed physically as a saturation 

occurring when a :elativistic trapping time for the most 

unstable mode is on the order of the growth time for that 

mode. This field level can stop the relative motion of 

the beams in approximately a growth time for the most 
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18 
unstable aode.   Our simulations qualitatively follow the 

prediction of this equation but the quantitative results, 

as yet, are only approximate. 

Electron-ion simulations have been considered but the 

results are still preliminary. These experiments require 

more careful analysis than the electron-electron cases 

since solving the dispersion relation in a particular limit 

may destroy the Lorentz invariant nature of this equation. 

These relativistic two-stream instability simulations 

were undertaken mainly to test the relativistic particle 

pusher for the P POWER program and to demonstrate its capa- 

bilities. More interesting problems like relativistic 
25 

weak beam interactions are currently being considered. 
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Appendix B - Counterstreaming Plasmas with Self Consistent 
Polarization Field's 

In application of the charging-the-boundaries algorithm, 

we discuss the electrostatic interaction of unequal density 

19 
counterstreaming plasmas . The problem is treated as 

spatially homogeneous, but the motivation for the study is 

a basically inhomogeneous problem, the so-called electro- 

static shock problem. When a dense plasma collides with a 

more rarified background plasma, several instabilities can 

occur—electron-electron, electron-ion, ion-ion, etc. depend- 

ing on the temperatures and drift velocities of the electrons 

and ions in the beam and in the background. A condition of 

prime interest is when the electron bath, which forms very 

rapidly from the two separate classes of electrons, becomes 

sufficiently hot for the ion-ion instability between the 

beam and background ions to occur.  In this case the beam 

and background will interact strongly and an electrostatic 

shock may form even in the absence of a magnetic field. 

20 21 22 In previous calculations  '  '  electron heating to 

permit the ion-ion instability has been of primary interest. 

The electron-electron and electron-ion instabilities do not 

provide sufficient heating. The problem of major interest is 

essentially inhomogeneous; therefore, momentum conservation 

implies that a net longitudinal current will flow when the 

electron-ion instability occurs (but not when the electron- 

electron two-stream occurs).  This current in the inhomo- 

geneous configuration leads to a polarization charge and 
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hence the development of a laminar longitudinal electric 

field opposing the current. This situation may be thought 

of as a constant current situation; the total current, 

plasma plus displacement, is zero. The laminar electric 

field which develops induces a net current in the opposite 

direction and thus an oscillation is set up at the plasna 

frequency. 

This problem, in a homogeneous analog, is exactly the 

situation that our "charging the boundaries" algorithm was 

designed to handle. The problem is similar to work per- 

23 
formed by Kruer  et al in that a high frequency k=0 electric 

field is present but in the present problem this laminar 

electric field develops simultaneous with, and is driven by, 

a strong electron-ion instability in the plasma itself. 

Figures 11, 12 and 13 show sample results from a two dimen- 

sional 128x128 cell run where the relative beam to back- 

ground density is taken as 10:1. This was accomplished by 

running twice as many beam particles as in the background, 

but with each particle having five times the mass and five 

times the charge of the background particles. The ion to 

electron mass ratio was taken as 64 for both the beam plasma 

and the background plasma. The situation shown was run for 

700 ID" with 32K beam particles and 16K background particles pe 

(K*1024). 

Compare Figures 11 and 12.  Figure 11 shows the develop- 

ment of the laminar electric field and Figure 12 shows the 

time evolution of the thermal velocities of the four classes 

of particles present in the simulation,  '.'he very rapid rise 
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of the electron thermal velocities prior to t»20 is indica- 

tive of the two-stream (electron-electron) instability. 

The two electron beams merge but the heating stops as 

shown, when Vj~Vth ' T^is temperature is very small com- 
e 

pared to the value needed for the ion-ion instability. 

Since the two classes of electrons conserve momentum and 

current simultaneously during their interaction the laminar 

field shown in Figure 11 is nearly zero for t<20. 

From t=20 u" to t'lSO w"*, the electron-ion instabi- 

lity grows and saturates.  Both electron classes now inter- 

act with the weaker background ions. The electrons are 

further heated until the electron-ion instability is stabi- 

lized but the heavy ion beam is not affected since the 

center of velocity of the electron distribution (Figure 13) 

is not strongly displaced from the high density beam ions. 

In fact, except in the vicinity of the background ions at 

V "-3,0, the more dense "heavy" electrons of the beam are 

hardly disturbed in passing through the relatively low 

density background. 

During the electron-ion instability, momentum and cur- 

rent cannot be conserved simultaneously, as true for electrons, 

because the mass ratio is not unity. Since momentum must 

be conserved, a net average current is driven in the posi- 

tive X direction as the lighter electrons move toward the 

background ion beam with a negative V . This effect is 

shown in Figure 11 between times t-20 and t~200. A positive 

current leads to a negative electric field because the total 

current, plasma plus displacement, must remain zero through 
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the "charging the boundaries" algorithm.  In Figure 11 the 

apparently wild fluctuations arise because the sampling rate 

for plotting the data points was chosen to be roughly t, 

A strong plasma frequency oscillation is superimposed on 

the systematic laminar fields so only the positive and nega- 

tive maxima of the charging fields are plotted in the figure. 

The laminar field loses its systematic bias at about 

t"200 u" when the electron-ion instability turns off, as 

can be seen by the knee in the thermal velocity curve of 

the light (background) ions. The light (background) electrons 

continue to heat however and a substantial amount of heating 

is observed in the beam ions. This heating occurs because 

a substantial number of ions are being accelerated in the 

positive X direction. 

When the boundary charging is not performed but the 

run is otherwise identical, the thermal velocities develop 

as in Figure 12 up to t~200 u~}  but after this time the 

"heavy" beam ions don't heat and the background electrons 

heat at a much slower rate. To explain the anomalous 

heating when the constant-total-current boundary condition 

is applied, one has to invoke a mechanism which depends on 

the laminar displacement field either directly or indirectly. 

The pulsations of the charging-field envelope with a time- 

scale of several ion plasma periods further suggests that 

23 some sort of interaction, perhaps parametric  , is causing 

the strong heating at late times. 

This problem was studied in different sized systems, 

with different mass ratios, different beam ratios and in 
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one dimension and the same qualitative behavior was observed. 

By looking at phase space plots of the various particle 

classes and by correlating the behavior, one sees that the 

ions are being drawn off the high density beam in a vortex- 

like structure with the same wavelength as the vortex struc- 

ture left over from the electron-ion instability. However, the 

electron-ion vortices give fluctuating fields at entirely 

the wrong frequency to account for the beam ion heating. 

In fact, one would expect interaction with the beam ions 

on the negative V side of the ion beam which is closer 

to the background ions. This is not the case—the posi- 

tive V ions are affected. 

We conjecture that the frequency difference between 

the electron-ion waves, excited to large amplitude by the 

fully saturated instability, and the oscillating laminar 

field from the displacement current is small, of order the 

ion plasma period as would be required for strong inter- 

action with the beam ions.  Further, the wavelength of the 

mode-mode interaction would be the same as the ion-electron 

vortices since the wave number of the laminar electric field 

is zero. Thus mode coupling is plausible, but by no means 

conclusively proven. A major point to be established is 

whether or not the amplitude of the laminar field envelope 

continues to grow.  If this field becomes larger, by about 

another factor of two, the criteria for the high frequency 

parametric instabilities will be satisfied. 
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A New Version of the Dipole Expansion Scheme 

B. Rosen 
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Hoboken, New Jersey 

and 
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ABSTRACT 

Here we present a modified version of the dipole 

expansion technique for particle simulation of plasmas.  In 

this version the field calculations do not take significantly 

longer than in nearest-grid-point calculations.  This is 

particularly important in two- and three-dimensional 

simulations. We also discuss an optimization of the coding, 

particularly for the operations thit must be done iu- each 

particle (computing it« contribution to the charge density 

and updating its position and velocity).   For example,  this 

optimization has given a one-dimensional,   nearest-grid-point 

code (lowest order in the multipole expansion scheme) that 

takes   ~l..i fisec/particle on th» IBM 360/91.   Finally,  we 

assess the value of the dipole correction by comparing dipole 

and nearest-grid-point simulations. 
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INTRODUCTION 

Recently a dipole expansion technique has been developed and 

1 2 
used for particle simulation of plasmas. '      This scheme employs a 

muAtipole expansion of finite-size particles about their nearest-grid- 

point (NGP) locations. This approach is quite physical and indeed helps 

one to relate numerical approximations to the physics. In addition, the 

scheme represents a systemat-'- expansion and may be carried to higher 

order. In practice, the technique has proven very satisfactory and has 

3 
given detailed agreement with a Vlasov code.      Computationally,  the 

bcheme favors more operations on each grid point over fewer operations 

on each particle. Since there are many more particles than grid points, 

this can be a useful trade-off. 

Here we describe a modified version of the dipole expansion 

scheme in which the field calculations do not take significantly longer 

than in nearest-grid-point calculations. We further discuss an opti- 

mization of th - coding - in particular, the coding for those operations 

that must be dor^ for each particle (computing its contribution to the charge 

density and updating its position and velocity).   Finally,  we assess the 

value of the dipole correction by comparing dipole and nearest-grid-p->in>. 

simulations. 

DIFFERENCED-DIPOLE TECHNIQUE 

The r. edification we present relates to the grid calculation and 

reduces the number of Fourier transforms to a minimum.  The basic 

new feature :s that we approximate derivatives appearing in higher-order 
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expulsion terms by differences over the cells. The error incurred re- 

presents a correction to a correction, and hence is higher order in the 

expansion parameter. Let us illustrate the procedure in one dimension, 

since its extension to more dimensions is obvious. Conside- a collection 

of finite-size particles. The charge density is 

p(x)=   Y   F(x-x.)   , 

where F is the form factor giving the shape of the particle, and x. is 

the location of the itn particle. We now perform a multipole expansion 

of the particles' charge density about their NGP locations: 

p(x)> ll{ 
s  teg 

F(x-x )+ Ax.F- (x-x ) + O 
g i g [To «)']}• 

Here,   x     is the nearest gri . point location and Ax.   is the displacement 

of the   itn  particle from that location.  Truncating the expansion at the 

12      2 dipole term incurs an error of order   — 6   /a   ,   where   0  is the cell 

size and  a  the effective size of the particle. Performing the second 

summation yields 

p«x)»2   PNGp(g)F(x-x )+ d(g)F'(x-x )+ ...      , 

where 

M)-l PNCp(g? «  7   I 

i€g 

d(g)   =   £   Ax.   . 
iCg 
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p      p  and  d are, respectively, the monopole and dipole charge« 

associated with the grid location g. 

The charge density can now be Fourier-transformed, but this means 

that the correction term involves computation of additional transforms 

(one in one-dimensional and two in two-dimensional simulations). Let 

us then approximate the derivative of the form factor by using a centered 

difference over the adjacent cells: 

f(«i >% KL-*o(L) 

Then, 

,w.jr„.V[,w.(Äii±£ji*=ii)]. 
g 

Now the charge density can be Fourier-transformed simply by making 

one transform of the modified array shown in brackets. In this way we 

save one, twc, or three transforms,  depending on the dimensionality of 

the problem. 

Figure 1 shows the two functions 

V (x)       and [f(xf I)-f(x-l)] 

2 
where   f(x) = exp-(x /2)   and indicate.« the nature of the approximation 

for what would be the worst case in practice; namely, the particle width 

equal to a cell size, in physical terms we are replacing the dipole  d« f'(jt) 

by a dipole which consists of two   extended charges   f (x), of equal but 

opposite charge   (d/26).  a distance of  26   apart.  The dipole moments of 

these two charge distributions agree,  but the higher momentr diffe-. 
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— OEMWTIW OF UUSSIM 

 DIFFERENCE KTVCEHUUSSUaS 

Fig. i. A comparison of the derivative of a Gauaaian with the 

difference of two Gauaaiana. The Gauaaian half-width ia equal to a 

cell aize. 

The aame technique ia uaed when we expand the electric field to 

determine the force on the particle. The net force on the particle ia given 

by the monopoly moment timea the electric field plua the dot product of 

the dipole moment and the gradient of the electric field.  By approximating 

the derivativea of the field using central differencea, we again avoid 

performing Fourier tranaforma to compute thoae derivativea. Thia aavea 

two additional tranaforma in two-dimensional,  and five in three-dimeneional 

aimulationa. Of course, we muat perform aome additional operationa to 

difference the varioua quantities, but the number of Fourier tranaforma 

now required ia the aame aa in neareat-grid-point calculation!. 

The multipole expanaion scheme, when truncated at the dipole 

order,  ia aimilar to the uaual charge-sharing schemes.   '      Indeed, 

these latter schemes in effect apportion the charge on the grid in such a 

way as to conserve both the monopole and dipole moments of the original 

charge.  The way to do this is not uniquely defined, and corresponds to 

our freedom to difference the derivative terms in varioua waya.   For 
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example,  in one-dimensional simulations charge • ha ring apportion« the 

charge over the two nearest grid point«, while the differenced dipole 

acheme presented here apportions the charge over the three nearest 

grid points (a centered difference about the nearest grid point location). 

The particle force calculation in the dipole scheme also differs from that 

in a charge-sharing scheme. For example,  in the dipole scheme the force 

on each particle is simply the electric field at its NGP location plus the 

dot product of its dipole moment and the derivative of the electric field 

there. By comparison,  charge-sharing schemes obtain the force by 

using weighted averages for each particle of the electric fields at the 

neighboring grid points. Lastly, finite-size particles are introduced in 

a very natural and systematic way via the dipole scheme. 

IMPLEMENTATION AND OPTIMIZATION 

The modified version of the dipole scheme has been implen»c»»«d 

and has given close agreement with the usual dipole technique. As a simple 

example, we consider a two-dimensional simulation of a thermal equilibrium 

plasma.  The system consists of 5000 particles in a doubly periodic system 

(8X     by   8X   ).  Figure 2  show« a comparison of energy conservation for 

all three techniques - NGP, dipole,  and modified dipole. Energy 

conservation is quite good for both dipole techniques,  and is an order of 

magnitude better than that for NGP. 

The grid calculation is observed to be nearly twice as fast in the 

modified dipole version for this two-dimensional simulation.  Furthermore, 
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Fig. 2 .   A comparison of energy conservation in NGP,  dipole, 

and modified dipote solutions (thermal equilibrium plasma). 

the grid calculation has been speeded up by an addional factor of ~ 4 

through the use of an optimizer" Fourier transform package.  For example, 

in ~ 0.15 sec on the IBM 360/91 we can now Four'er-transform the charge 

density on a 64 by 64 grid,  convert to the Fourier components of  E     and 

E   ,  and invert the transform to find the fields.  The basic transform 
y 

package is a general-purpose one,  and may be of value to other people 

in computational physics. 

We have concentrated on discussing the field calculations,   since 

the technique for doing these has been modified.   For completeness   let us 

now briefly discuss the time required for the operations that must be 

performed for each particle (comp. ting its contribution to th* charge 

density and updating itr position and velocity). At Princeton a two-dimen- 

sional NGP code (lowest order in the multipole expansion) has been de- 
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veloped which requires  ~ 4 ßsec /particle on the IBM 360/91.     In this 

code the two particle coordinate* are packed into one double word,  and 
g 

similarly for the two components of the velocity.     In a similar code, 

one of the authors (B. H.) has developed a one-dimensional NGP code that 

takes  ~ 1.8 ß sec /particle. In this latter code each particle's velocity and 

position are packed into one double word.  Both of these codes take 

advantage of the architecture of the IBM 360/91. In particular,  such 

features as the double-word fetch and the parallel execution of fixed and 

floating point instructions are exploited. A dipole version of this opti- 

mised one-dimensional code requires  ~ 4 /user/particle, and we estimate 

that an optimized dipole version of the two-dimensional code will take 

~ 8 ßsec/particle. 

COMPARISON OF DIPOLE AND NGP SIMULATIONS 

Finally,  let us indicate the value of the dipole correction (or any 

charge-sharing type of correction) by comparison with simulations using 

the nearest-grid-point approximation. It is particularly convenient to do 

this in the dipole expansion scheme,   since NGP is simply zero order in 

this expansion. In the following examples we use the modified dipole 

technique. 

First we consider a strong two-beam instability - two Maxwetlian 

r 6 beam* separated by   4 v2 thermal velocities.      We use 5000 particles in 

a doubly periodic system ( 32A._  by  32 A    ).   Thii is a convenient problem 

for numerical tests,  but of course we would use both a larger grid and 
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more particles to investigate the physics with confidence.  Figure 3 shows 

the total electrostatic wave energy for both the dipole and NGP simulations. 

This energy exponentiates to ~ 2. 6% of the total energy.  The NGP results 

agree reasonably well with the dipole results. In the course of the simu- 

lation, the energy for the NGP solution varies from the initial total 

energy of the system by ~ 0.2 %, but this is adequate to quantitatively 

follow the gross behavior of this rapidly growing instability. 

However, let us now investigate a weaker instability. We consider 

a small beam moving at 6. 4 thermal velocities in a Maxwellian plasma. 

The ratio of the beam density to the background plasma density is ~ 0. 25 %. 

The main plasma contains 19, 000 simulation particles and the beam con- 

tains 1000 particles,  each with 0. OS of the charge and mass of a plasma 

particle.  The system is one-dimensional with a periodicity length of 

256 V 
Figure 4  shows both the electrostatic wave energy and the change 

in the total energy versus time for both of the techniques.   The wave energy 

at    <i>    t=   120   has grown to   ~).2% of the initial total energy of the 

system.  The NGP result agrees qualitatively with the dipole result,  but 

it does not agree quantitatively.  Indeed,  by   u    t ~ 100   the total wave 

energies in the two solutions differ by ~25%.  This quantitative disagree- 

ment is not surprising when we note that the energy conservation for NGP 

is rather poor in this case.  The total energy varies by — 0. 8 % of the 

initial total energy, while the wave energy becomes — 1. 2 %. 

Figure 5  shows a comparison of phase sp^ce at   u    t = 118   for 

both of the techniques.  We see quite noticeable differences,   showing that 

significant errors have accumulated in the particle orbits in the NGP 
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Fig. 3.    Dipole and NGP solution* for the electrostatic wave energy 

vs time for a strong two-beam instability. 

ai7 

15 • 

ll) 

1   k   '   ic  '   ft   '   ft   '   to ' 

Fig. 4. Dipole and NGP solutions for (a)the total energy v« time 

and (b) the electrostatic wave energy vs time for .i weak two b'.am insta- 

bility. 
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571 



i 

Rosen, Kruer and Daws on 

solution. (The phase space plots in the dipole and the modified dipole 

solutions agree closely.) 

In conclusion, we have presented a modified version of the dipole 

expansion technique in which the field calculations do not take significantly 

longer than in NGP calculations. In addition, we have discussed an opti- 

misation of the coding - particularly for the operations that must be per- 

formed for each particle. Lastly, we have compared the dipole and NGP 

techniques for several simple problems. The results show that NGP does 

reasonably well in describing gross behavior - for example,  in determining 

growth rates of strong instabilities. However,  features which are irore 

sensitive to higher moments of the distribution function can be poorly 

given, since significant errors can accumulate in the particle orbits. Ac 

in all simulations, the choice of technique is connected with the subtlety 

of the phenomena under investigation. 
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Livermore. California 

i.   nnsoDucnoN 

In the controlled-fusion experiment Astron a beam of relativistic 

electrons is injected into an evacuated cylindrical region in vhich an 

externally applied magnetic field has been established. The cylindri- 

cal region is bounded by tvo concentric aluminum shells. The outer 

shell is 12 cm thick and its inner radiur. is 7h  cm. The thin inner 

shell has a radius of 20 cm. The velocity of the injected electrons 

makes an angle of 85 deg with the axis of the region. In order to 

facilitate trapping, a cylinder of resistor vires, azimuthally oriented, 

has been installed at a radius of 52 cm. The electrons that are trapped 

form a cylindrical layer (shell) known as the E-layer. The mean radius 

of the E-layer is ^0 cm; its length varies from 1 to k  meters, depend- 

ing on the initial conditions. The aim is to confine a sufficient 

number of electrons in the E-layer so that the self field of the E- 

layer exceeds the applied field. The resulting field configuration 

contains a region that is minimum |B| and has no loss cones. 

The E-layer consists of about 10 electrons. It is, of course 

impractical to follow each electron individually. Furthermore, we are 

not interested in the position and velocity of each electron; we are 

only interested in the electron density. Since the electron density 

8 1 
in the E-layer is about 10 , cc it is logical to treat the E-layer a= 
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an electron fluid. Toe electron density can then be obtained from the 

solution of the Vlasov equation. The approach was successfully used 

by Killeen in the LAXER CODE. An alternate approach, the one ve use 

here, is to approximate the E-layer by a large number of particles and 

follow each particle individually. The electron density is, then, 

obtained from the particle density. The force on a particle is ob- 

tained from the full electromagnetic field and its trajectory is 

determined from the solution of the relativistic equations of motion, 

The number of particles used must be sufficiently large to give an 

accurate statistical representation of the E-layer and yet small 

h h 
enough to be practical. In practice we use between 10 and 3 x 10 

particles. The principal advantage of this method over the fluid 

method is that it requires considerably less computation time to solve 

a given problem, and is more accurate for injection problems. 

The computation proceeds as follows: First the charge and current 

densities are determined from the- known positions and velocities of the 

particles. These charge and current densities are then used to deter- 

mine the vector and scalar potentials by solving the respective wave 

equations. The new values of the vector and scalar potentials are 

used to calculate the force on each particle. These forces are used 

to move each particle in accordance with the relativistic equations of 

motion- The above process is then repeated. 

The Astron geometry is axisymmetric. Furthermore, it is experi- 

mentally observed that the E-layer, during most of its life is essen- 

tially axially symmetric. We therefore feel that the assumption of 

axial symmetry, dictated by economic factors, is a reasonable one to make. 
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This paper is divided into three chapters.    In Chapter Uwe dis- 

cuss the mathematical model.   Additions to the model, relating to the 

Astron experiment, are introduced in Chapter HI.   In Chapter XV the 

difference approximations that we use and the energy checks are 

described. 

II.    MMHBimCAJ, MODEL 

A.    Basic Equations 

If we employ the relations 

B = V x A, I = -V0 - i H , V.A + i |g = 0 (1) 

with Maxwell's equations, we obtain the following wave equations 

„       1   o2A kr 

c   Jt c 

tf"P - -5 —5 = - wp (3) 
e* at 

where A and 0 are the vector and scalar potentials respectively, ^, 

jj_     , and p are the E-layer current density, resistor current density, 

and the charge density, respectively. 

Assuming axial symmetry, Eqs. (2) and (3) become, in cylindrical 

coordinates 

-   -~(rAr) 
or [r or       r J 

b\     1   d2A„ 4irj 

dz c   ot c 
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o  fl d "|     o2Afl     1   d
2A.        l«r 

dx[r&.-      8J     o*2      c   r c 8 + Je res ) (5) 

r orV    dr I + d?~     c5 dt5" 

lur 

- <Jz + Jz res} 
c 

(6) 

1 d a*\   a2*   1 d2* 

r dr 1    or dz       c   dt 
•nrp (7) 

The equations of motion for a relativistic electron can be derived 

fron Lagrange's equations 

d   /dL \     dL 
(8) 

where '*, ■ (r,9,z) and L is the Lagmngian given by 

■ - m^c  VI - ß   - e0 + £ A« .. v c  

where au and e  are respectively the rest nass and charge of the elec- 

tron and ß m w/c. 

Assuming axial symmetry, we get the following equations of motion 

,..      ..          ,2,            *      "*r »0(rr + yr - 7r9 )= - e — -   
or     c dt 

e I".!* -   re-- 
c L    *" or \ dz       dr /J 

2*       e mQ7r 0 + ^ rAfl ■ const. » Pg 

(10) 

(11) 

\ 
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0 ät     eät       c[   |ät       är J dz j 

where Pfl is the canonical angular momentum and y «= l/y 1 - ß . 

B. Boundary Conditions 

The domain of the model consists of two concentric grounded 

cylinders as shown in Fig* 1. The walls of the cylinders are assumed 

to be perfect conductors. This assumption is legitimate because of 

the short time scales. The boundary conditions at a perfect conductor 

are 

0, EII • 0. (13) 

These conditions require that 

at all boundaries 

at all boundaries 

Ae int (r'z> " ° 

(*(r,z) «= 0 

Az(r,z) «= 0 

A_(r,z) » 0 «t z = zi>z2 *°r *H r» 

at r = r,,r„ for all z 

(HO 

(15) 

(16) 

(17) 

where A. 4 .   is that part of A« which Is generated by internal sources, 

i.e. currents in the E-layer and in the resistors.    The rest of A-, 

henceforth designated A„ eoll» is generated by current in the external 

coils.    Wiese currents are dc.    Hence, the A-., has ample time to 

soak through the: walls.    The remaining boundary conditions are obtained 

fron the gauge  condition 

V-A + £ —    c (18) 
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They *» 

and 
fa 

for all r. 

(19) 

(20) 

C Superparticle Model 

The superparticles In this model are composed of a large mater 

of electrons uniformly distributed throughout their volune. The shape 

of each superparticle is that of a ring of rectangular cross section. 

The velocity of a superparticle has three components v , v. and 

T . Since the superparticle is ring shaped, v refers to the speed 
Z r 

with which it is expanding (contracting) and v. ',o the speed with which 

it rotates about the axis, v is the usual axial component of velocity. 
z 

The charge density p of a superparticle is given by 

f > n 
e 2Srarai 

(21) 

where n is the number of electrons per superparticle, e the electronic 

charge, r the radius of the superparticle, as its radial thickness, 

and to.  its axial thickness. 

The three components of the current density of a superparticle 

are given by 

Jr- ne 2irr toe to. 

Je" ne 
evf 

2irr toe t% 

(22) 

(23) 
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*1 's 

-z 

Fig- 1. Danain of the model r. is the radius of the cantilever, 

r_ is the radius of the resistors, and r„ is the inner radius 

of the outer «all. 

i-i        i        1+1 

F.'0. 2. Area weighting scheme for a superparticle. 
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j = n     n%     . (2k) 
z      e 2irr Ar Az 

The field equations are solved in a dcnain that is subdivided by 

a finite difference mesh. The extent of this dcnain is given by 

where r<J = JAr, z± = iAt, r^ = JAr, z^ = IjAz, and -«^ - -J^*. 

the charge and current densities must be known on the mesh points« 

The equations of motion yield the positions of the centers of the super- 

particles. These positions, usually, do not coincide with any mesh 

point. Therefore some method must bs devised whereby we can obtain 

the charge and current densities at the aesh points from the known 

positions and velocities of the superparticles. In the method that 

we use the charge and current of a superparticle is shared among each 

of the four neighboring grid points in accordance with the standard 

area weighting procedure. A simple way of visualizing this procedure 

in shown in Fig. 2 (we assume the charge to be uniformly distributed 

over the shaded region). Let the center of the particle be located 

in the zone (i,j) and let its coordinates be (z,r). The regions of 

the particle that are assigned to the neighboring grid points are 

denoted by A., A». A,, and A^. A. is allocated to (i,j), A~ to 

(1 + 1,J), A to (i,J + 1) and A^ to (i + 1,J + l). The values of the 

A's are given by 

A1- [(i +l)Az - z][(J +l)Ar-r] 

Aj, « [(i ♦ l)Az - z](r - JAr) 
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Aj = (z - I4B)[(J + 1W - r] 

A^ = (z - Ufc)(r - JAr). 

To obtain the current and charge densities at a mesh point, the con- 

tributions fron all the superparticles to ttat mesh point are summed. 

D.    DiBensionless Formulation 

We assume that the canonical angular momentum is a constant of the 

motion 

■r^J^rV const- 
It is convenient to introduce the function 

so that 

t« i*„ 

(U) 

(25) 

(26) 
m0c  V 

and since ve are assuming that all the particles have the same Pn we 

""-  'ise t in place of A„. The rationale for introducing ♦ is that it 

obviates the necessity of calculating v , as will be apparent shortly. 

We now introduce the dimensionless velocity u defined by 

y u ■ — v —     c — (27) 

where 
JTTTj? 

Substituting Eq. (27) into the expression for y we get 

,,   ?   2   2»l/2 

From Eq. (26) ve have ♦ ■ ru-, hence 

(28) 
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2 »1/2 
2 .      2     *   \ 7-   l*ur   +»2   + -j 

7J 
(20) 

If we differentiate Bq. (27) with respect to tine and rearrange the 

teras, we get 

r ■ — 
M C     • • 

(30) 

••     c * 
^z * 

Substitution of Bis. (27) and (30) into Eqs. (10' and (12) yields for 

the radial equation of notion 

du 

dt 

cd   f*2 \       e   d*       e     To*       c       ?*       dA.V 

ydr^j     «QC ar     «QC   L^t       7       \öe       5T | 

Similarly the axial equation of motion beecns 

du, c d / *2 \      e    #       e     IV      c      / dA_     dA f 

dt 7 dz \ 2r  /    BpC dt     mQc   Idt       y      1 dz       dr J 

Vte now introduce the dimerisicnless function ix defined Vy 

TVVT (33) 

In order to evaluate the denominator we consider an equilibrium orbit 

in a uniform vacuum field. For such a field It is true that 

Aö(r,z) - \ B^r (» 

where Bft is that axial component of the field.    From the radial 

583 



BretUchneider. Killeen, aad Mirin 

equation of action we have 

W " " *c r0«*> 

where r. is the radius of the orbit.   Hence 

fienee _ 

" - - 5 *• 
eVo 

He BOW introduce the rest of our dlaensionless variables 

(35) 

(36) 

(37) 

B- — , Z « — , 
ro r0 

Kg 2TAr 

— » » ■ )j » 

Vo Vo 

K B. 

£t 
"ro 

Vo 

Bo Bo 
and 

sA e«' Bo 

(33) 

(39) 

(1*0) 

Froa these definitions and Eqs. (1), (26), and (37) 

u ■ 1 + 2Ra. 

v    i a»   ia« E = 55 Ü 

(M) 

(42) 

er" 
e       dX     1   as 1   ST 

e      a«    Id* 
We * " 5 ** 

CO) 
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where e , e , and e   are the dimensionless components of the electric y      e z 
op 

field and r   = e /sue   is the classical radius of the electron. 

It is convenient to let 

U * nc + u (l*) 

where u    represents the vac« field and u represents the field of the 

E-layer.    The function n    satisfies the equation 

2 3 

o-r oZ< 
C»5) 

We introduce the parameter 

eBoro -k 
C   « - -H^ . - (2.93 x 10 >0rQ 

*0C 

and define the function P(R,Z,T) by 

(U6) 

P = | C 2(^/R2). (*7) 

Using Eqs. (37) through (39) and (!»6) we can write the equations of 

motion (51) and (32)  in dinenslonless form as follows 

du 1*     *      C   in     C / 1 &>      *\   _F 
«I. + u K-*       (1*3) 
dr 70*      £*      R    5t      7 R de    * 

du            1 ^      JX            o*     C          |l ao>      *\    -F 
-it. ._+c—+ — u ._]•_£.    (i»9) 
di r ae    az       on    7 iR IE       « 

We now introduce the dimensionless quantities I., L .  I,, a»jd 1 
8 I L. p 

correspondinr *.j the dimensionless current and charge deüjities 
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h' 
2n r 

e ' 

cB„ awzr, -E- 

cB0  <-• tyWfc0 

v^-T- 4n e 
e 

cB„ Z " V**2 V !^-» Ry 

V 
lt»r„'r,        2n r    _   1 

0 ^ e e   V^ 
P  —   AC AIT*,     y        "~ 

0*-*   R "o' 
cr^

p = ARAZrn 

(50) 

(51) 

(52) 

(53) 

where we used Eqs. (25),  (27), (37), and (38) to write the right-haDd 

sides of Eqs.  (21) through (2*0 in terms of dlnensionless quantities. 

The symbol J] in the above equations reptresents a sum over the contri- 

butions of all the particles in that region of space, as explained 

-n IB. 

Finally, using Eqs. (38) and (39), we can write the wave equations 

(4) throxigh (7) in dioensionless fcrm 

d II au>\ 

a« I R or 

*2        ~2 am     o CD 

■ - I- 

d /1 & \   ä2n   aft» 

R dR \     dR /     Ä"      äT 

i a &1 

- — |R — 1 + 
R dR ÖRJ     cE 

a2* 
^■^ 

cfX 

dt' 

(5*) 

(55) 

(56) 

(57) 
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The boundary conditions in dinensionless form are 

n(R,Z) =0     at all boundaries 

x(R,Z) =0     at all boundaries 

K(R,Z) = 0    at R = R^Rg   for all Z 

o>(R,Z) = 0     at Z = Z1,Zg   for all R 

|g (R,Z) = 0   at R = R^Rg    for all Z 

(58) 

(59) 

?z *(R>Z ) = 0   at Z = ZX,Z2    for all R 

(61) 

(62) 

(63) 

III. SPECIAL FEATURES OF THE ASTRON MODEL 

A. Current in tbe Resistors 

The function of the resistors is to extract energy from the E- 

layer electrons. The resistors consist of a large number of very fine 

(1.5 oil) wires. They are '"and on a cylindrical frane of fixed radius 

such that the current in them flows in the & direction only. It is 

convenient to replace the individual resistor wires with a resistor 

sheet. 

The current density in the resistors is given by 

J9res " °6 (A) 

where o. is the conductivity of the resistor sheet and Eg the 9 com- 

ponent of the electric fiald at the resistor«. E0 is calculated from 
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c dt 
(65) 

where Ae is the fl component of the vector potential. The current 

density J„, given shove, cannot he used in the field calculation since 

no allowance has been made for the fact that the radial thickness of 

a zone Ar is much greater than the radial thickness of the resistor 

sheet. The proper current density is given by 

J9res 

ffe8e 1 *8 

Ar cat 
at r = r (66) 

Jeres = ° at r 4 r res 

where ba is the radial thickness of the resistor sheet, and r   is 6 ' r>s 

the radius of the resistor layer. 

In the present Astron experiment, the current in the resistors is 

allowed to flow in the 9-direction only.    In order to study the effect 

of allowing the current in the resistors to flow in the z- direction 

also, we have Included this option in our model. 

The current density in the z-resistors is given by 

5        ■ a E "zres       z z (67) 

where a   is the conductivity of the z*resistor sheet, and E    is the z z 

z-component of the electron field at the resistors.    E   is given by z 

#     1 dA, 
Ez =  

dz      c at 
(63) 

where A    is tho z-component of the vector potential.    Again we have 
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to make allowance for the difference la the n-dial thickness of the 

resistors 8   and Ar.    The resulting curren^density is 

"zres Ar   \äz     cät I 
at r = r 

•'zres = ° at r 4 

res 

res 

(69) 

B.    Injection Scheite 

1. Injection Radius 
lfte radial equation of motion of a particle is 

m0(yr + yr - yrB )  =e Er + f (r9Bz - zBg) (70) 

We wish to inject the particle into a region where the radial force on 

it is small, in order to minimize fluctuations. In Astron, the injec- 

tion conditions on the electrons are normally 

r = f = 7 = Er = Be = 0. (71) 

Using   hese conditions, Eg,. (70) reduces to 

yr0   = - £ rflB    . (72) 

Writing v„ = r9 and solving for v$,  we get 

erB_ 
ve=- 

cruif, 
(73) 

Substituting Eq.. (73) its'■'■> (25) we get 

er B. 

V 
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Substituting Eq. (7"0 into   (37) and using Eq. (3fc) ve get 

IT = 2R D„ . z (75) 

Solving for R, we get 

R = s/Wä>z • (76) 

The procedure then is to pick a value of z at vhich ve vish to inject 

and then find the point at which Eq.  (76) is satisfied. 

2.    Injection Rate 

The number of superparticles injected per time step is given by 

N_Ar/t    , where H_ is the total number of particles that will be used 

per pulse, At is the time step, and T_ is the pulse length. 

A superparticle is a ring of circulating charge,   übe current of 

this ring is given by n e/t_, where e is the electronic charge, n   is 

t\e number of electrons per superparticle, and T_ is the cyclotron 

leriod.    Hence the current injected per time step is given by 

XAt = 

nee     tyVr 

TB      TPL 

(78) 

If a current I is injected into Astron we have, at the end of one 

cyclotron period, a current I circulating in the machine.    Therefore 

the current that has to be injected per time step is 

*At 
AT 

TB 
(79) 

Equating the right band side of Eqs. (78) and (79) we obtain 
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H, 
e*r 

(80) 

C. neutralization Scheme 

In order to see bow we can incorporate the neutralization pheno- 

menon into the model we must look at the process in detail. We will 

do so by looking at one region In space and see how neutralization 

proceeds with time. Consider a saall region of neutral gas 

into which a hunch of electrons has entere j. The electrons remain in 

this region for a time 5t. By the time they leave they will have under- 

gone n. ionising collisions, since the incident electron bunch has a 

high electric field associated with it, the cold electrons that are 

freed by the ionizing collisions are accelerated out of the region. 

When the electron bunch leaves, the region contains n. positive Ion?. 

Now let another bunch of electrons with the same density and pulse 

length enter this region. It too undergoes ionizing collisions and 

the electrons liberated by these collisions are again accelerated out 

of the region, only not as fast as the first ones since the electric 

field of the second hunch is slightly masked by the field of the 

residual n. positive ions. If we now imagine similar hunches entering 

the region in succession, the number of positive Ions in the region 

will build up until the number of ions equals the number of electrons 

in the Incident beam. 

Each region in space must be given a certain amount of positive 

charge. This amount depends on how much cumulative time electrons 

have spent in that region. Therefore the net amount of charge in a 
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given region at a given tin» is the master of electrons in the region 

minus the number of positive ions in the region. 

As explained earlier, the r,z configuration space in the model is 

divided into a finite-difference grid.   The smallest region in the 

model is that of a zone.   Bach zone is, therefore, aligned a number 

of positive ions comensurate nlth the amount of neutralization that 

occurred in that zone. 

Let us consider a team of N electrons circulating in one zone. 

The number of ionizing collisions made by this beam of electrons in a 

distance cot is given by 

n± = H^JcBt (81) 

where N is the number of gas atoms per car, Q is the ionlzatiou cross 

section acd M is the number of beam electrons, and c the velocity of 

light. Note that the ratio n./M ■ NQc&t is independent of electron 

density. This ratio can also be interpreted as the fraction of the 

team neutralized in time St. Replacing electrons with superparticles, 

ve can say that NQc&t is the fraction of the superparticle charge that 

is neutralized in time Rt. If ve give the pressure in microns and use 
-19  2 -k Q * 2.5 X iO ' cm , we have NQcSt - 2.7 x 10 pSt. 

We now summarize the process. Let M superparticles enter a zone. 

After one time step, AT, they contribute n. ■ 2.7 x 10 HpAr positive 

ions to that space. 
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I 

D.    Current in the Cantilever 

The current in the cantilever J   is an externally applied axial 

current.    It can be applied after the E-layer has reached steady state. 

J   is time de; «ndent and we represent it by 

Jc(t) = JcS(r - rc)8(t - Tg)F(t) (82) 

where J is the magnitude of the current density, r is the radius of 

the cantilever, T is the initiation time, and F(t) is the response 

function of the circuit. 

If the current in the cantilever is established initially and is 

not changed in the course of the run, then it is more accurate to 

represent the resulting field analytically. It is convenient to speci- 

fy the B. desired at P, £iven radius. Let B„ be the desired field at 

r , then s' 

Bec = 
r B scfc 

(83) 

where Bfl   is the field due to the current in the cantilever.    We now 

write Eq.  (83) in terms of oiv dimensionless variables 

u9c 
_s e 

RB„ (84) 

E.    Plasma Equilibria 

We wish to find the E-layer distribution and the »magnetic field 

when the E-layer is in equilibrium with plasma.    We will confine our- 

selves to those cases where the E-layer is sufficiently strong to 

593 



Brettschneider,  KiHeen, and Mirin 

reverse the field.    Furthermore, ve vill assume an MHD model for the 

plasma vith the additional restriction that the pressure be Isotropie. 

Tbc MHD equations which describe the plasma reduce to the magneto- 

hydrostatic equations 

c ip y B = ** 

hir VxB = r K -        C     _p 

V-B = 0 

(85) 

(86) 

(87) 

vhere p is the plasma pressure and J    the plasma current (excluding the 

E-layer current). 

From Eq.  (85) we see that 

jp.Vp = 0 (88) 

and B'Vp = 0. (89) 

The p = :onst. surfaces are both magnetic level surfaces and plasma 

current level surfaces. 

We further assune tlwt the plasma current has no axial or radial 

components. With this assumption Eq. (85) yields the following equations 

3r " cJp z »   31 c" JpBr' (90) 

Now B   and B   are given by r z 

Br = 

Boro2 g 
2r     dz 

Boro2 f 
2r     dr 

(91) 
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hence y>o = 

2cr   dp 

Vo  * 
(98) 

The pressure profile p = P((I) cannot be derived without solving the 

buildup problem so we pick a reasonable P(ii).    We wish P(ji) to be posi- 

tive and finite on closed flux surfaces, and we expect the pressure to 

be greatest on the innermost flux surfaces.    With these considerations 

we choose as our pressure profile 

B„ 
p(^) = y;0 - lfe&0 - Ü) — (93) 

Requiring that k^ > 0 insures that the plasma pressure -tnd density are 

positive definite. 

From Eq. (92) we get the plasma current 

cB, 

V 4l7T, 
RV»(£0 - £)m~ e(\JLQ - M) W 

where we used the relation r = r.R.    In analogy with the previously 

defined quantities I0,  I ,  I , etc., vc now introduce the dimension- 

less quantity I 

Sir r R 

- 2R%m(ü0 - »)a~le&0 - Ü). 

(95) 

(96) 

IV. DIFFERENCE EQUATIONS 

The field equations are solved on a finite difference mesh. The 

mesh spacing is given by AR = h, AZ = mh, where m is an integer. The 

position on the mesh is given by R = jh, Z. = imh, where -I < i < L 

and 0 < j < J. A given time is denoted by an integral numer of time 
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steps, i.e. T   = nAr, where n = 0, 1, 2,  •••.    We now introduce the 

notation u.    = |I(R,,Z.»T ), etc. 

The difference approximation that we use in solving the field 

equations is called the Alternating Direction Implicit method.    The 

difference approximation is written as two equations.    As a conveni- 

ence we use half time steps.    In the first half time step the equation 

is ^mplicit in the R direction and explicit in the Z direction, and in 

th.3 second half time step the equation is explicit in R in«* implicit 

in Z. 

The difference equations for the first half time step are 

n+l/2     „n n-l/2     ., T~ n+l/2       n+l/2       n+l/2       n+l/2' 
miJ       ' ^IJ + °»1J       m *i   mi,J+l - *ij       _ mij       - "i^-l 

(At/2)' n* 

+ <iM 

2j + 1 

n 

2J  - 1 

m h n :ij 

n+l/2 
2nt. +n n-l/2 

ij 2j 

(At/2)' 

11+1/2 . u
n+1/2      „n+l/2       n+l/2 

i^J+1 ' "1-1 JA. 
23 + 1 

%j-l 

2j 

m h x 

n+l/2 _    n-l/2 
IÜ *ji  

At 

+ I eij 

(At/2)2 2Jh 

+ -ÄI - 2K"    + Kn 

JA. 
m h 

L-1A + jn 
T51J 

,.n un 

2mh 

5% 

^n+l/2       n-l/2 

At 
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n+l/2      wn       Yn-l/2 f 

Ü "      1J      2j        = J_    (2J + l)(xn+1/2 - Xn+1/2) 
(At/2)2 2~^ L Hi'J+1       *J      ) 

n+l/2     vn+l/2v 
ij        _ Xi,j-l;J (aj - i)(xt 

Xn - 2Xn    4. Vn 

,  Xi^l,J       f*lj  + Xi-l..1 h 

A2 ^ 

Hie difference equations for the second half time st p are 

(At/2)2 ~g? 

2J V2 - «,n+1/2     m--*/2 . ffln+l/21 

2J + 1 2j - 1 TUJ 
1/2 

n+1  _ n+l/2 ^ , n   n+1   _ n+1   n+1 
iy_ 

(At/2)' 
'ij   »1+1,0 - ^ij + "1-1,0- 

272 m h 

2J n+l/2. tl
n+l/2        n+l/2        n+l/2' 

2j + 1 2J - 1 

n+1       n 

+ c,  ^    ' UJ1 
At 

g - </2 + a. SL -2^+ «n+1 
(At/2)£ 

ij           1-1, .1 
-2T5 L- 
m h 

+ ~"2 
2Jli 

(2j  - D(^+l/2 -  K^/_l) 
Kn+1        Kn 

3 At 
n+l/2        n+l/2 

2 a* V) 
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n+1      ^n+l/2        n 
XiJ   ' fSu       + *1J 

(At/2)2 

n+1 ^n+1     ..n+1 
*1+1,J ' ^Xlj 1-1, J 

2V. 
m h * 

1     L„.      -,%vn+l/2     vn+l/2v 
+ ^|(2J+l)<i,/+l-

XU      ) 

1/2 
U 

where ^ = - ^ ofa, c? 
Mr     . 
-TOO, and c„ ch    z z' 2 

&rr 
0.5. ch   z z B0rQre 

vhen R = R       and c, = c   = c   = 0 vhen R ^ R      . 
res 1        d        j res 

We solve the above difference equations by the method described 

in Ref. 1.    The boundary conditions are 

u(-I>,j) = n(lrJ) = n(i>Jmin) ■ H<**J) = ° 

X(-l2,j) = Xjl^j) = X(i,Jmln) = X(1,J) 

<(i,JBln) - 'CM) = 0 

<(-I?Jj) = <-\ + 1>J), <(I - 1,J) = "(I»J) 

where J 
min 

ü)(-I2J)  = a)(llf J) = 0 

u)(i'Jmin) = a^1'JB.in+:L)' «(i#J-l) = =>(*»') 

ia the raaius of the cantilever. 

We use a leapfrog scheme to difference the equations of motion 

C*3) and (^9)- For the axial motion we have 

n+ 
u 

7 

'2 _ n- 
u 

z 
1/2 

F 
z 

AT n 
y 

7n+l n+l/2 

Similarly for the radial motion 

n+l/2        n-l/2 u            - a 
_r r 

AT 

r 
Rn+1  - Rn fl/2 

All the above quantities u ,  u ,  7,  7,,  R, F  , F    are evaluated at  the 

particle centers.    Since F    and F    are calculated  from the  fields 
*^ z r 

598 



Electron» in Axisymmetric Mirror Field 

which ar« given at t'je mesh points only, we use linear Interpolation 

to get their values at the particle centers. 

4.    Energy Conservation Check 

The total enesgy present In the system at a give tine Is the sum 

of the energy in the electromagnetic field £     and the kinetic energy 
KM 

of the particles T. The energy in the electromagnetic field is given 

by 

.2T 

0 

$EM " hfj    *°J   **J kAXrdr(B2 ♦ E2) 
0 -L, 

(97) 

2222 2222 
where B   = Br   + B^    + BR   and E   = Er    + E0    + Ez  .    Using the 

definitions (38) and (1*0) Eq.  («7) becomes 

EN 

aax 
RdR(br

2 + b9
2 ♦ tz

2 ♦ e/ ♦ ep
2 + e/) (98) 

2 3 
where we have integrated over 8 and divided by B- r_ A. 

The kinetic energy of a superparticle is given by the expression 

Tv - nerv=.0c
2. (99) 

Therefore the kinetic energy of all the particles is given by 

2   » 
VgC   x 
B„r, 

(100) 

0     v=l 

2    3/ where we have divided T ty B„ r "A- 
'00 

Energy leaves t.:     system by two principal ways;  through dissipa- 

tion in the resistors ■    I through particles striking the boundaries. 

The rate of energy dissipation in the resistors is 

%-T.iA + Zii\ (101) 
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vhere Ig. and I . are, respectively, the total azimuthal and axiel 

current in the 1     resistor zone,£   is a summation over the axial 
i 

zones, Rp and R   are, respectively, the aziauthal and axial resistance 

per resistor zone.    R   and Rfl are the same for all the i* ,_stor zones, 

although they need not be. 

The amount of energy dissipated in one t_r j step is 

*<* • M[E<4r'9 * 4»,)] 

At 

We now introduce the dimensionless quantities J. and J 
9 Z 

zres 
(102) 

c   Bo 

■JRI  (afl5fl/ 
• i an 

0O9' 2 3T (105) 

z -      z 
C    B0 

&Vl »    .  >      e       dx     Id* 
cF j (OZV B0TFr7 c* 4 2 oT (104) 

Substituting these quantities into the equation for £  and dividing 

2 5 / 
the whole expression by BQ rQ

J/h,  we get the following expression for 

the dimensionless energy lost to the resistors in one time step 

6w = * m ^(^)2 'AT [cJrE ^i + «7^ E ^i] (105) 

When a particle hits the wall the only energy lost from the problem is 

its kinetic energy. This is because the image charge and image current 
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cancel the field of the particle as it nears tb' wall.    We denote this 

energy by 
Nn i, 2      loss 

-loss     7T~T 
Bo *o     v=i 

(106) 

where N.        is the number of particles lost.    .Therefore the quantity 

*EM + * + «St + Tloss (107) 

must he constant throughout the calculation, ß ..   is the energy dis- 

sipated in the resistors up to time n. 

V. APPLICATION 

Our aim in constructing this model was to make it into a flexible 

experimental tool. We have made provisionforvarying a large number 

of parameters. A large number of graphs are also provided. At present, 

we can vary the injection current, the pulse length, the number of 

pulses, and the number of particles used. The resistance and the posi- 

tion of the resistors are variable; a minor modification will enable 

us to vary their configuration as well. The applied magnetic field 

can be evaluated in two distinct ways, through the use of one of two 

analytical models or from a computer program called COILS, which cal- 

culates the field at any desired point in space due to a set of coils 

whose centers are on the axis. In addition, we can include an arbi- 

trary toroidal field, a6 shown in section II D. The neutralization 

rate and the plasma pressure profile are also quite arbitrary, as seen 

from sections III C and III E. All the above variables can, with a 

minor modification, be made time dependent. 

The graphs fall into two distinct groups. One group describes 

the state of the system at a given time. This group includes two- 
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phase space plots Rvs a and Z vs u. ,  a graph shoving the positions 

of all the particles, at a given time, in real space, and the current in 

the resistors at a given time. Three magnetic field plots are given. 

The first is a plot of B vs Z at tvo radial positions, the second is 

a plot B vs R at three axial positions, and the third is a contour 

plot of B. We also include a plot of the axial distribution of the 

particles. The other group describes the time evolution of a number 

of system parameters. This group includes a plot of the kinetic energy 

vs time, a plot of the electromagnetic energy vs time, and a plot of 

the e.icrgy lost to the resistors vs time. 
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Computation of Plasma Equilibria 
in Three Dimensions* 

David V. Anderson t and John Killeen 
Lawrence Radiation Laboratory 

University of California 
Livermore, California 

ABSTRACT 

Plasma equilibria corresponding to cases of finite ß have been 

computed for various containment schemes which share the common feature 

of effective two-dimensional symmetry.    We present a code which will 

solve the genera]  nonsymmetric three-dimensional equations for equi- 

libria.    We restrict our model by assuming open *'leld lines but note 

that the case for closed field lines could be solved by a similar 

numerical method differing only in details.    The hydromagnetic equili- 

brium equation for tensor pressure Is reduced to one scalar elliptic 

equation.    An implicit iterative algorithm is used to solve the finite 

difference form of the equation.    The number of grid points is minimized 

by exploiting the many-fold symmetries found in most stabilized mirror 

confinement schemes.    Results for an I - 2 stabilized mirror device are 

presented.    Application is intended to be extended ti   the ALICE and 2 -X 

devices. 

*Work  performed  under   the   auspices   of   the  United   States 
Atonic  Energy   Commission. 

Ph.D.   candidate,   Department   of  Applied   Scierce,   University 
of   California,   Davls/Li vertnore . 
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i.   nnRöDwrnoN 

Two-dimensional models for plasma equilibria have been used to 

compute the equilibrium fields for various containment schemes includ- 

12      3 k ing Astron, Levitron, Tokomak, and the stuffed cusp.  Several con- 

tainment schemes, including the stabilized mirror devices, do not 

possess an ignorable coordinate, allowing a reduction of the equilibrium 

equations to two dimensions. A code has been developed to handle the 

general case for open containment where confinement is achieved by the 

mirror effect. We note that the equilibrium equations for closed con- 

finement is a vector equation but we comment that the same algorithm 

described here could be directly generalized to that '„-ase. 

II. THE EQUILIBRIUM EQUATIONS 

For open containment, equilibrium requirep a tensor pressure of 

the form 

Pu(B) - P.(B) 
F - FjB)! + ~A g- -~ _3B . M) 

Tbe object of the computational program is to use piessuie profiles 

PII(B) and P.(l?) which »hoy tbe utabUK.v conditions of Taylor and 

Has tie' 

dPy 
B u- > 0; 

dB 

dP 
p + —= > 0 

dB 
(2) 

and construct equilibria from .tiene. If we take the equations of 

hydromagnetic equilibrium 
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£ x B * V.P 

Vx B = £ 

V • B » 0 

and assume the functional dependence for the pressure components 

P± = P^B), P., = P„(B). 

Then the equilibrium equations reduce to 

B x V x (v|) = 0 

V x vB = kB for some scalar k or 

where 
PII - P, 

(3) 

("0 

(5) 

(6) 

(7) 

(0) 

From Eq.  (7) we obtain the cuiTent 

J=  (J)L-J^xB 

and V'(V x vB) = V-kB = B-Vk. = 0. 

(9) 

Since each field UDJ leaves the plasma boundary, the current along 

that line must vanish at the boundary. That is, k = 0 at the boundary. 

The condition B«Vk = 0 insures that k = 0 inside the plasma also. Irom 

Eq« (7) we obtain the eqiiation 

(V x vB) = 0. 

We define a potential l>y 

vB = -.'cp, 

(10) 

(11) 
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so then (v"«vB) = v <p = B'^v.    The scalar equation 

S?~ = i 7^.Vv (12) 

then represents the equilibrium. 

The decomposition <P = <P + <P is made in which <p denotes the con- 

tribution of the vacuum field which is given and where q> is the unknown 

potential function giving the plasma fields. Then for a vacuum 

^q>c =0;   Bc = - S*pc; 

So the equation to he solved is 

V*<p- i [w.(V<pp - Bc)j 

ve - - 1. (13) 

(Ik) 

which is readily seen to be an elliptic partial differential equation. 

Dirichlet-type boundary conditions are specified with q; = 0 on a sur- 

face far from the plasma region, that is, at some finite but large 

distance from the plasma center we neglect the fields produced by the 

plasma. 

When Eq. (1*0 is solved in two dimensions an algorithm known as 

the alternating direction implicit (ADI) uethod is used to obtain the 

solution. For three dimensions the ADI scheme can produce numerical 

instabilities and a generalization of it is used which it better 

7 
behaved. Instead we use an algorithm developed by Douglas and Gunn 

(DO) to solve Eq. (lh). 

Before the DG algorithm can be used we convert Eq. (lk)  to a 

parabolic equation in which the time variable plays the role of itera- 

tion parameter. So instead of sol\ing (lk)  we 6olve the- equation 
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^<pp-±[Vv.(tfpp-Bc)]= p-E 
ot 

(15) 

and look for the steady state solutions vhlch then satisfy Eq. (lfc) 

also. 

Although t Is really an iteration parameter, it is sometimes use- 

ful to identify it as the time and consider p(dq>/dt) as some sort of 

dissipative term which allows the initial non-equilibrium plasma to 

relax into an equilibrium state. The solution of Bq. (15) is initiated 

by choosing a trial set of iterates cp... and applying tha algorithm to 

g 
generate a second set <Pj1k- We continue iterating forward until the 

difference p(cp - <p " ) is acceptably small, thus assuring us of a 

steady-state solution which also solves {Ik). 

III. DIFFERENCE EQUATIONS AND THEIR SOLUTION 

For any orthogonal geometry the finite difference form of the equi- 

librium equations can be reduced to one scalar equation of the form 

A<Pi-l + *»U1  + GPj.1. + ^J+1 + EVl 
+ ^k+l + <* - g- (16) 

Here we have suppressed all the non-varied subscripts, i.e., A ■ A..., 

ip. n = <p. ,   , . j etc.    The i, 2, and k indices give the spatial loca- 

tion in terr.o of tne orthogonal coordinates x., Xg, and x, eo <p.,,. = 

<p (x.,).,  (x2),, (xi)).]'   A restriction on Eq. (l6) is that it represents 

an elliptic partial differential equation.    The coefficient G can be 

decomposed into the form 

G = Gx + Gg + G? (17) 

where each succsssive term involves the i, J,  operators respectively. 
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We then define the generalized difference operators A     ,  A     , and 
xl       x2 

3 
Ax/=A<Pi-l+B^:'.+l 

+ Gl<P 

^ cp = Opyi + IXPJ+1 + G2<P (18) 

A^q. = E^., + Fcp^ + Gyp. 

The difference equation corresponding to Eq. (l'O is 

( Av + A„ + A„ )<P = g« (19) 
xl   x2   x3 

Taking the finite difference form of Eq. (15) we get the parabolic 

difference equations 

n+1  _n\ (20) 
Xl   x2 % 

which we solve by the DG method. The superscript n or n+1 is inten- 

tionally deleted from the LHS and it is the DG algorithm which specifies 

the exact mixture of <p  and cp to be used. Three equations result in 

the DG method. The first equation treats the A  operator implicitly 
xl 

and the other two equations treat A  and A  implicitly. The equations 
x2    x3 

are 

ia_ (<pn+1 + cp") + A  *n +A   <Pn = g + P(<Pn+1 - <Pn) 2   x (21*) 
vl *2 *3 

|Ax   (cpn+1 + cpn) + |Ax   (cpn+2 + <pn) + A    q,n = g + p(cpn+a - pn)        (21b) 

1 A     /mn+l  , ~P\      1A      /«,n+2      „n%      1A     /«n+3     „n» - A    (cp       + <P ) + sA     (cp       + cp ) + *A     (cp   J + cp ) 
t A, CA^5 c        X .-, 

-*■ ^ J 

= g + p(„n+5 - <pn) (21c) 
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A more useful set is obtained by subtracting Eq. (21b) from Eq. 

(21a) and Eq.  (21c) from Eq.  (21b),  so the set is 

U    (<pn+1 + <pn) +Ax  <pn + &x cpn = g + p(q,n+1 - <pn) 
2   x 

1A     /J"2     ja\      „/,n-t2     _n+l\ _&x  (q>       - <p ) = p(*       - <p     ) 

|Ax  («p«+3 . ft u p((pn+5 . ^ 

(22a) 

(22b) 

(22c) 

Given tpn we solve Eq. (22a) for q>       and uje it sequentially to 

obtain <pn+2 and (pn+5 from Eqs.  (22b) and (22c).    We then set <pn+5 - <pn 

and repeat until the iterative process converges.    We check convergence 

by computing the residual error |<p       - <p |  summed over the grid space. 

Each of the equations (22a),  (22b), and (22c) are now one-dimen- 

sional two-point boundary value problems respectively in the^,  *2   aad 

x , coordinates and each is solved by the double sweep algorithm.    For 

example, we give the algorithm for Eq.  (22a).    Since (pn+    is the unknown 

in this equation we write It as 

_n+l     „«_«+! Ax     <pn+1 - 2Pq>n+1 = 2g -  Axcpn - 2(Ax    + &x )cpn - p(pn 

= Scpn (23) 

where S<p   is sv.jrthand for the right side which is a known function. 

V.'e now expand the A     to obtain 

Let _n+l   _  _n+l , , 
'i-1   -i-lTl  T *i-l 

and substitute this into Eq. (2U). One obtains 
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^i-i+oi-2^r1+Bp?s+Afi.i-s'a 

(Ae 1_1 + G1- 2p) 
<?* + 1-1 
ri+l (A tlml + Gx - 2p) 

vhlch is of the Barne form as Eq. (25), so ve get 

(26) 

(2-r) 

1     (A txl + Qx - 2p) 

. ^-^1-1 
1     (Ae ul + G.,^ - 2p) 

(28) 

(29) 

Equations (25), (28), and (29) give us the machinery to solve Eq. (23). 

The boundary condition at i = 1 is used to give   «   and    f .   By sveep- 

ing to the right using Eqs. (28) and (29) we generate the entire 

sequence of   e's and f 's.   The upper boundary condition is used to 

determine cp       .    Then Eq. (25) is used in a sweep to tue left to 
Taax _n+l obtain the solution cp  at each grid point. Hence the name double 

sweep is used to describe the process. This equation is solved for 

each i line specified by a J, k pair of indices exce-Jt for those j, k 

pairs lying on the boundary surface. Equations (22b) and (22c) are 

solved in a similar manner. After each full iteration cycle (gener- 

ating a cp  from a cpn) we must also change the coefficients A, B, C, 

D, E, and F whict are, in general, functions of (p. The function g 

must also be recomputed. These dependencer on cp make the equations non- 

linear. 

If the equations were linear then ths DG algorithm is uncondition- 

ally stable in the numerical sense. Introduction of the nonlinearities 

may lead to cases in which stable convergence requires the conveigence 

constant p to exceed some critical value. In practice, where the non- 
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Fig.  1.   Configuration of simple stabilized mirror device 

linearities are not too pathological, one usually obtains stable con- 

vergence to a solution. 

übe uniqueness property of solutions is often lost In the nonlinear 

case.   Equations frequently have no solution or multiple solutions, and 

the algorithms are often incapable of finding all the solutions vhen 

more than one exists. 

IV.    SIMPLE STABILIZED MIRROR MACHINE EQUILIBRIA 

To a simple mirror field B   we have added the field B_ produced by 

four Ioffe bars.    Figure 1 shows the configuration.    For B   we use the 

analytical form appropriate to cylindrical coordinates 

Bffl   = XA2I1(\R) sin \z 

BB   - 2AX + XAgI0(\R) cos \z (30) 

B     - 0. 

Similarly we compute the components B_ , B_   frou the currents in 

the Ioffe bars.    The total vacuum field is then 
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?c * 5» + h' (31) 

lbe parameters are adjusted so Bc is a minimum B field.    In 

cylindrical coordinates Eq. (lU) is 

7 37(r3r'       r2  3e2       ,,2      «      'r lir rc 

1  lv   (li_.  B     j   + |Ä (|i.  B     )]        (32) 

We  let   the  indices  i,   J,   and k now stand  for   the variables 

r,   0,   and   z respectively.     If we  now write  all   the  derivatives 

of $  in   their  second order difference  form we  obtain  Eq.   (16) 

with   the   fallowing  definitions   fo r   the  coefficients 

^i-l^iJ lijk "  (r^-fj.^vrj^lr, 

(r.+r.^, ) 

♦   tkOs l r 

Bijk "  (riH-ri_1Xri+1-ri)ri       lv  3rJiJk  U^-r^J 

(a) 

(b) 

2   i + /_i_ • au.) 

C^H' 
(c) 

(33) 

,  1     *v. 

V* '^'V-VUVV lv> Wi* 

^T^P (d) 

2  «,   /i. ?v, ,1  Ei* " iwviHVk-i1     v n't* irkn-Vl) (e) 

 2 rt  3^x 1 r (f) 
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Xi*    ri'ri*rri-1'
(riH-ri'"' 'i^m-'i-iX'i-'i.iJ (g) 

** " '!a    'VI-'H^J,^ 
+ tVrVxHe^e^)^ <•») 

'1* 
-2   [ 

v1-ViHVir?7r + f^77rvTTTv:vrl ] (i] 

8
ij* lv   l3r Br    +  r  36 B9     *3zBzJ}iJk 

C CO 

These  coefficients  have  been  defined  for a mesh with  variable 

spacing.     If ve  are   to  have  a  fine mesh  in   the  plasma  region 

i t is  useful    to  use   the  variable  mesh which   allows   us   to   have 

a  sparse  array of grid points   in   the  exterior  region. 

The  various   components of   the   equilibria   fields   are 

assumed   to  have   the  same   symmetries   as   the  vacuum  fiel ds 

produced by  the  coils.     If   the  I<jffe  bars   are  located  at 

9  ■  0,   if/2,   is.   3?r/2  respectively   then   the  symmetries   involved 

give 

Br(r«       ■   0 (a) 

(34) 

B   (e--ir/*)«  0;     B   (e-w/1»)   -   0 (b) 
9 v 

These   suggest   that one  may  study  a  reduced  domain  bounded 

in   the   following manner 

0  < r  < r 

-Z < Z    < I max mv 

-ff/Ii        < 6    < v/k 

(a) 

(b) 

(c) 

(35) 

It   Is  evident  thatEq.   (35c)   gives   a   four-lbld  reduction 
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of the  volume   to  be  studied,     To   have  a well-posed problem we 

need   two more   conditions.     We  assume   that  the  distortion of 

the  original   vacuum field  by  the  plasma  is negligible   at   the 

outer boundaries.     These   conditions  with   those  given  in Eg..   (3*0 

give  us   the   following boundary  conditions on   the  potential 

function  <js   (see  Eq.   (11 )). 

♦('■'.«>= °= ft(r=o) 

|| (e-TT/10 - o - || (a--»A (36) 

4( z= z       )   =  0  =       4( z=-z       ) r max T max 

Eqn. (ik)   with Eq. (36) comprises a well posed partial differ- 

ential system which we solve by the DC algorithm. 

The physical model used for the pressure profile is 

needed to compute v(B) at each step in the iteration.  This is 

obtained from Eq. (8) once we know r.(B) and P.-fB).  We use 
o 

the  pressure   tensor of Taylor    given by 

P       =   CB(B   -B)m 

„ ,        If B  <  B.   and  in   the   interior   region 
iL    " CB^-B)-1 ° {37) 

11 0  o therwise, 

and 

In   this   case   the  stability  conditions  Eq.   (2)   reduce   to 

B  -   C[(l+m)B   -   B   ](B   -B)m_1   >   0 
o       o 

1   +  mc   [2B     -   C(l+m)B](B   -B)m"2   >   0 o o 

(38) 

To   demonstrate   that  the   above  methods  work  we  have  made 

a preliminary  set of  runs   and  computed   the  equilibria of  an 
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Fig. 2. |Bi contours with P±, Pjj, ^, and #.. specified. 
In the 1st and 3rd quadrants the pear shaped profile is "top- 
heavy" as here. In the 2nd and 4th quadrants the profiles 
are inverted. At • = 0, n/2, ir, 3ir/2 the profiles are sym- 
n.etric. They are also invariant with respect to a rotation 
of  i# = sr. 
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m*k   type plasma for various  values of C.     In  every case   the 

Has tie-Taylor Stability  criteria,  Eq.   (38),   are   satisfied. 

The  results   are  weakly  dependent on   6  so   we  present   them 

for  a   lypical   angle   9  =   IT/8  and  show   the  variations   due    to   r 

and   z iu   the  contour plots  below.     Fig.   2  shows   the   contours   for 

B  and  hence   for  P,    and P.- . 

The  intended  goal   is   to   study   the  equll ibria o f   the  ALICE 

and 2-X devices  utilizing  a similar program.     In   the  preliminary 

runs   a very  coarse   grid was   employed   (11   x 11   x 11)   in   (r,   8,    z) . 

A much more   refined grid will   be  used  for   the  ALICE  and  2-X 

s tudies. 
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ABSTRACT 

A one-fluid model of a low-pressure plasma in a 

toroidal geometry is presented.   For laboratory parameters, 

it demonstrates the existence of shock structure in the pres- 

ence of resistivity and viscosity leading to containment 

times of the order of milliseconds.   The model computes the 

time evolution on a two-dimensional mesh of the plasma 

density, potential, and three velocity and current components. 

The momentum equation includes the effects of bulk viscosity 

and gyroviscous stress.   The generalized Ohm's law contains 

the resistive, Hall, and electron pressure terms.   The time 

step can be taken large enough (of order 1 fisec for the 

stellarator case) for simulations comparable to a complete 

laboratory experiment to be performed in a reasonable amount 

of computer time (about 20 minute* of 360/91 time).   Mathe- 

matically, the equations are in integro-differential form.   We 

present a linear stability criterion for our sum-difference 

formulations of these equations.   Acoustic, geodesic acoustic, 

drift, and convective modes severely constrain the choice of 
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difference formulations.   We have used both the Courant- 

Isaacson-Rees and the Lax-Wendroff schemes for the convec- 

tive term in the momentum equation.   We found that the 

Courant -Isaac son -Rees scheme introduced a numerical 

viscosity which was unacceptably large in the presence of the 

resistive rotational instability.   On the other hand, the Lax- 

Wendroff scheme may couple surfaces more strongly when 

large-amplitude modes or dissimilar shock structures are 

present on adjacent surfaces. 

I.   INTRODUCTION 

Encouraging experimental results have recently been obtained from the 

study of tokamak devices.   Since the plasma loss from these toroidal 

machines is on a classical time scale, rather than the shorter Böhm time 

scale, it becomes necessary in computer simulation to run for times 

comparable with classical diffusion.   Clearly this puts emphasis on a fluid 

description of plasma which has averaged out velocity space instabilities, 

enabling time steps to be taken orders of magnitude larger than the plasma 

period.   The program reported here is an extension of a previous code. 

There the behavior of a resistive toroidal plasma in a static magnetic field 

was considered.   The effects of rotational transform, plasma inertia and 

pressure gradients along the lines of force were included.   We now take 

into account the effects of the Hall terms in Ohm's law, together with finite 

ion Larmor radius (FLR) and viscous terms in the pressure tensor. 

A critical feature of the code is the differencing of the momentum 

equation parallel to the magnetic field.   Initially, the method of Courant, 
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2 
Isaacson, and Rees   was used.   With the drift terms, numerical viscosity 

introduced by this scheme became unacceptably large in the presence of 

rotation, causing the plasma to settle down to a numerical steady state 

rathe * than a physical equilibrium.   In its place the Lax-Wendroff two-step 

calculation   was employed.   This two-step procedure has been used to great 

4 
advantage elsewhere in plasma physics, in particular by Potter   in simula- 

tion of the dense Plasma Focus experiment.   Since the errors in treating 

the convective terms are now of higher order, they no longer mask the 

diffusion processes and the rotation velocity increases until, for certain 

parameters, a shock forms. 

The main computational results of this code can be summarized as 

follows: 

In the absence of rotation, the plasma is in an unstable equilibrium. 

At this stage the flux out of the system has the classical Pfirsch-Schliiter 

5 
value.     In a short time a positive potential builds up on the inside of the 

plasma, leading to rotation about the minor axis.   For small values of the 

rotational transform, the effect of viscosity is decreased and the rotation 

reaches a critical speed, first pointed out by Stringer,    leading to the 

formation of a shock.   At this stage the flux out of the system is an order 

of magnitude larger than the Pfirsch-Schlüter value.   For larger rotational 

transform, the effective viscosity coefficient is increased and the rotation 

reaches an equilibrium without shock formation.   The classical flux value 

i» ihen enhanced by a factor of order 3. 

In the next section the fluid equations are presented.   Section IIT shows 

the differencing of the equations.   The final section presents the computa- 
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tional results, while the Appendix deals with the numerical stability of the 

model. 

II.   FLUID EQUATIONS 

We use an isothermal one-fluid plasma model with an externally imposed 

static magnetic field.   In Gaussian units, the fluid equations are: 

jXB 
  — 4-  w   . 17 v   1  X   Tf . Ü    _ + V-P = 0 (1) 

v X B 
E + - vi + '•*      en l     c en y 

i*£ 
KTeVn] 

!"•+ V(nv) = 0 

Maxwell's equations take the simple form: 

VX E = 0 

V'X = o 

V'B = 0 

(2) 

(3) 

(4) 

(5) 

(6) 

The coordinate system used is depicted in Fig. 1 with the magnetic field 

satisfying Eq. (6) identicallv.   Equation (5) has already restricted considera- 

tion to low frequency with the assumption of charge neutrality.   Equation (4) 

embodies the static magnetic field assumption, and is satisfied identically 

by 

E =  -V • 

7 
Following Simon and Thompson,    the pressure tensor with FLR 

corrections can be expressed in the form: 

(7) 
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MAJOR AXIS | 
OF TORUS   ' 

£= B
0[%f<*)+£2]/[l-(r/R)cose] 

Fig. 1.   The toroidal coordinate system. 

P      = YP - ^(e   e    + e   e   ):V^ rr      LJ 20  ~s~r      -r~s      - 

'   -I 88 Ll 
P+    TX (e    e     +e   e   ):Vv 20 "*s — r     — r — s      ~ 

>      =P      =^7;(ee     -ee):Vv rs sr       20 —r~r     —s — s      ~ 

P      = P rb br - — (e    e,^ e, e   ):Vv O ~s~b     -b~8      - 

P.     =p=   -(e   e+ee   ):Vv bs sb       0 —r—b     -b~r      - 

He re, £  ■ £   , e,   describe a right-handed orthogonal coordinate system, 

with e     and e     defining the radial and poloidal directions lying in the plane 

perpendicular to the direction, e, , oi the magnetic field.   Only the ion 

Larmor radius is assumed finite, so that the hydrostatic pressure refers 

to the ions unless a summation sign appears.   These corrections also 

assume that parallel and perpendicular pressures are equal, which is rea- 

sonable for the collisional plasmas under consideration.   The main effect 
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of the FLR corrections occurs in the parallel momentum equation, where 

the inertial term v Vv.. is replaced by (v -V^J-Vv.., V,j being the ion diamag- 

netic velocity (e, X Vp)/pQ. 

For the parameters of interest the coefficient of parallel viscosity far 

g 
exceeds that of perpendicular viscosity, and from Braginskii   the most 

2    2     2 2 
important effect is the addition of    fi    (f /r )(9 v   /96 ), where f = t r/2ffR, 

to the right-hand side of the parallel component of Eq. (1).   Examination of 

this term shows that small values of rotational transform, l, greatly reduce 

the effect of parallel viscosity.   For experimental parameters, however, 

it is still the dominant viscous term.   The differential equation used to 

advance the parallel momentum is given at the end of the Appendix.   The 

Lax-Wendroff procedure requires equations in conservation form.   Thus, 

where possible, the FLR and inertia terms have been cast in derivative form. 

The remaining nonconservative terms are small for the physical parameters 

of interest. 

The parallel component of Ohm's law, Eq. (2), can be expressed in the 

form 
- Vn0 =   7Jj(| , (8) 

where 

A       *       KTC    i 0 =   #   -    In n 

Taking the cross product with e   , the same equation yields the perpendicular 

velocity 

/9v 

E XT   _   1 
 Vn en J 

+      V-T + en        = (9) 
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Here, Eq. (1) has been utilized to substitute for the perpendicular current, 

and the pressure tensor has baen expressed as 

1=   Inl 
iKT I  + T 

In similar fashion, the vector product of Eq. (1) yields the perpendicular 

current 

r9v 

U =   I^bX{IKT7n+ V-T+R« F+(r7)s]} (10) 

The parallel component of *2q.  (1) (with the rearrangement given in the 

Appendix) and Eq.  (3) serves to advance parallel momentum and density in 

time.    Both of these equations use the Lax-Wendroff two-step procedure. 

Equation (")) gives the perpendicular current, which leads through Eq.  (5) 

to the parallel current.   Integration of Eq.  (8) determines the potential up 

to an arbitrary constant.    This constant is obtained from the condition that 

no charge accumulate on a magnetic surface, 

j 2-Vr dS/|vr |  = 0      , 

as explained in Ref. 1.   Armed with the potential, Eq.  (9) yields the perpen- 

dicular velocity. 

III.   DIFFERENCE EQUATIONS 

2 1 
An r   , 9 mesh   is used, dividing up a cross section of the torus into 

equal area cells.   Velocity and density are evaluated at the same space- 

time points, but since most of the current arises through the gradient of 

density, it is displaced a half step in 0 from the density. 
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Fig. 2,   The Lax-Wendroff mesh. 

To illustrate the Lax-Wendroff procedure, we consider the differencing 

of the density conservation equation.   Figure 2 shows the Lax-Wendroff 

lattice with auxiliary and main values on alternate mesh points marked by 

crosses and circles, respectively.   In order to compute density at the center 

circle A at time t + 1, fluxes are required at the four auxiliary points 1,2, 

3,4 at time t + 1/2.   The calculation of the auxiliary density at 3 takes 

the form 

t+1/2 
(3) = [n(A) + n'fB) + n^C) + n*(D)J/4 

J-(rNnvr)t (B) - (rNnv^* (D) 
_L ______ 

+   ^(v^fv^f^.fNntv^fy^ffA), 

rhA0 
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The main density is then obtained by 

«... tIA1 Mr1   r 
n     (A) = n (A) - *j      

(m^JtH/Z(Z) - (rNnvr)t+1/2(4) 

Ar 

[Nn(v   +£v )f+l/2(3) - [Nn(v   + fv. )t+1/2 

1    • rhA» 

Here, N = 1 - r/R cos 6 and h   = 1+ C, where R is the major radius.   The 

merits of this procedure have been thoroughly discussed  e.g., Richtmyer 

9 
and Morton.     One point of interest, however, arises in the behavior al the 

electron drift wave.      The equation for this wave is 

ve 
3n       _d   8n 
8t  +    r     00 ' 

where 

e cKTe    On 
d   =  "   |e fnB  8r 

Its difference formulation is [taking the limit E ~~ ■*> oi Eq.  (A4) of the 

Appendix] 

i+l i i-l 

Thus, perturbations with different phases or frequencies on neighboring 

surfaces can be expected to interact.   Since the electron drift wave depends 

on the local density gradient,the frequency changes with radius, and in 

numerical studies of this mode the amplitude on one surface was found to 

grow at the expense of the amplitude on she neighboring surfaces.    This did 

not occur with acoustic modes, where the frequency is almost independent 

of radius.   Clearly this exchange of energy will decrease with the radial 

mesh size, and in practice the number of radial points used was sufficient 
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I L 
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X  
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I 

§B(owsM-»X 

B(OKm'sL<u^K'-f 

lB«(0M5lou))-»tfl Fig.  3.    Computational procedure. 

to keep the effect small. 

Figure 3 shows a flow chart ior the program, with crosses marking 

auxiliary quantities.    The first calculations in the time loop are the evalua- 

tion of auxiliary density and parallel momentum, both of these equations 

being the first step in the Lax-Wendroff scheme.   Next comes the evaluation 

of the perpendicular current, using Eq.  (10).    Here the density gradient 

contribution is properly  centered in space and time: however, the inortial 

and FLR terms must use the perpendicular velocity *t a previous time.   In 

doing this it is assumed that these terms are small.   In practice this sets 

an upper limit on the radial density gradient that can be considered,  since 

for very large density gradients the diamagnetic contribution to v ,   becomes 
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sizable, with a resulting large inertia.   A discussion of the density profile 

used is given in the next section.   Integration of the charge-conservation 

equation determines parallel current to within a surface constant, while 

integration of Eq.  (8) over the surface eliminates 0 and yields that constant. 

Integration of Eq.  (8) also serves to determine the potential up to c surface 

constant.    The last three operations are detailed in Ref.  1.    The constant 

part of the potential has already been determined in the previous time step, 

as will be explained.    We are now able to gain the perpendicular velocity 

using Eq.  (9).   Again we note that the inertial terms appearing on the right- 

hand side of thic equation are the only ones not centered ir time,  hiving to 

use v .   from a previous time.    However, for large magnetic fields the 

coefficient of this term is greatly reduced. 

The next part of the code determines the calculation of the main density, 

car?»et*, and velocities.    The parallel viscosity term was included 

implicitly it. .he momentum equation in the following way: 

t+1 t l *SlA l       t 

-2v;i+1{riej) + v!i(Vi-i)i+  

The second term in the bracket can then be taken over to the left-hand side. 

This method of treating viscosity was found to enhance the numerical sta- 

bility of the system, allowing one to take larger time steps.    When the 

effective viscous coefficient is small shock structure develops,  resulting in 

steep azimuthal density gradients.   In order to eliminate the spurious short- 

wavelength oscillations that occurred in the presence of these gradients, a 
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smoothing viscosity of the form suggested by Lapidus     was applied.   For 

example, in one dimension a new quantity would be replaced by a corrected 

value 

I n*t+\e.,,nt+l(V+eö[|8ve(V|^fnt+V+i)]        , 

where  6F(0.) = F(Ö.) - F(0.    ) and  e is a small number.   This is equivalent 

to adding a diffusion term with a coefficient that becomes effective only when 

a wavelength becomes of order or less than the mesh size.    Following on 

from the main density and parallel momentum, the currents and perpendicular 

velocities are calculated in a way similar t" the calculations of the auxiliary 

quantities, with the addition of a loop to calculate the average potential on 

a magnetic surface.   The procedure for obtaining 0 is the same  .s that 

considered in Ref. 1.   Ihe method used enabled determination of 3 0/9t9r 

on the main mesh, and h;nce 0 half a time step ahead on the auxiliary mesh. 

This value of 0 is correctly centered for the calculation of the auxiliary 

velocity in the next time step.   In order to gain 0 on the main mesh, the 

quantity 9 0/9t9r   is averaged with its value at the previous time. 

The boundary conditions assume that plasma is scraped off at the wall. 

As a result, the velocity there is put to zero and the density is assumed 

small and independent of azimath.   The dominant modes occurring in this 

low-0 plasma are of the drift-acoustic type and are highly localized (i.e., 

the radial wavelength is extremely short compa -ed with the scale length of 

density variations), so boundary conditions cannot be expected to influence 

the interior of the plasma to any great extent. 

630 



Fluid Simulation of MHO Plasma 

IV.   COMPUTATIONAL RESULTS 

Analytically, we can show    that an equilibrium exists when there is no 

average radial electric field on a magnetic surface.   Using an expansion in 

the ratio r /R, values of density and velocity were calculated from the 

equations of Sec. Ill, with partial time derivatives set to zero.    These 

values were used as initial conditions.   Attempts to start the program away 

from this equilibrium resulted in large-scale oscillations which masked the 

long-term behavior. 

The initial density distribution was chosen to be nearly a "similarity 

solution" for the irrotational equilibrium, with a region of constant density 

between its outer boundary and the wall.    The "similarity solution" would 

resistively decay without changing its shape, if its outer boundary were 

held fixed.   The constant-density region insulates t/ie diffusing portion of 

the plasma from the wall, making detailed treatment of the boundary unnec- 

essary.   Thus,  our calculations describe an expanding plasma, diffusing 

into a low-density exterior region, and we would not, for example,  expect 

to accurately describe effects that depend on the characteristics of the wall 

or the limiter. 

We found that numerical calculations of similarity profiles actually 

suggested a tendency toward such a low-density  "tail" on the density piofile 

for lower magnetic fields; e.g. ,   5 X 10    gauss and the parameters quoted 

in the next paragraph.   In this irrotational equilibrium the flux out of the 

system scaled classically,  even with the drift terms present. 
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The density profile, averaged over a magnetic surface, changes much 

less rapidly than the azimuthal variation.   Thus, the profile can be considered 

a persistent feature of the calculation.   Such a similarity profile is shown 

13       -3 
in Fig. 4 for the parameters n   = !0     cm     of hydrogen at equal ion and 

4 
electron temperatures of 25 eV, a magnetic field of 10   gauss, a 100-cm 

major radius, a 5-cm minor radius, Spitzer resistivity, and a uniform 

rotational transform   I = 120° . 

The equilibrium investigated above is unstable to a rotational mode, 

so the more interesting case, physically, is the one in which rotation is 

allowed to develop.    Figure 5 illustrates two oases of the buildup of average 

E X B rotation on a surface over a period of 250 fxsec.    The velocity is 

scaled to the drift velocity   c£KT/2eB  r   .    Curve (a) ahowp the average 

poloidal velocity on a magnetic surface at r = 4 cm for the parameters listed 

in the previous paragraph.    By the end of the run the rotation has reached 

its maximum and the time derivative of the average potential has fallen to 

a small value.   An important feature of the rotation is a shift of plasma 

density towards the outside of the torus,  resulting in an enhancement of 

order   3 over the Pfirsch-Schlüter flux.    For t >   250 fisec the rotation speed 

decreases very slowly as the density is lost from the surface,  indicating the 

dependence of the rotational equilibrium on the density gradient. 

Curve (b) shows the development of rotation for the same dencity and 

magnetic, field,  but the ion and electron temperatures are 15 eV, the uniform 

rotational transform is 90* , and the magnetic surface is at  r = 3.6 cm. 
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13        -3 
Fig.   5.    Growth of E X B dritt for   laboratory parameters!   n - 10     cm     , 

4 
B = 10    gauss, and classical resistivity. 
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Comparison of the two curves shows that rotation builds up at a faster rate 

for the smaller value of rotational transform (note that the initial rotation 

for curve (a) is nonzero because this is a continuation of a previous run). 

In both cases the oscillations that occur during the buildup of rotation are 

damped upon reaching maximum rotation.    Their frequency corresponds to 

the geodesic acoustic mode,   ' modified by drift terms. 

Stringer   has shown that in the absence of viscosity a singularity exists 

in the region where the  E X B drift is of order minus the electron drift 

velocity.    T,ee, ITazeltine, and R'>senh'.uth,      neglecting the drift terms, 

showed that the singularity would lead to shock formation at the critical speed 

14,15 fv .    Later theory predicted Miat viscosity would lead to a stable rota- 

tional state.   These results are based on an ordering that breaks down with 

small viscosity, as Fig.  6 demonstrates.    This figure shows the azimuthal 

variation of density after 2 50 (isec,  corresponding to the parameters of 

curve (b) in Fig.   5.    The 9 - It position is the outside of the torus.    The 

density variation is given on surfaces out to and including r = 3.6 cm.    The 

plasma has formed a shock towards the inside of the torus.   The velocity 

on the inside exceeds ihe average velocity plotted in curve (b), which is of 

order minus the electron drift velocity, in agreement with Ref. 6.   The flux out 

of the system is now an order of magnitude larger than the Ffirsch-Schlüter 

value,  and corresponds to a particle los9 time of the order of milliseconds. 

The equivalent profile corresponding with curve (a) of Fig.   5 would exhibit 

./■ssentially a cosine dependence on 9, in accordance with Refs.    14   and   15.   We 

concludt- that when the effective viscosity coefficient, Ji   f   ,  is small—in 

particular for small rotational transform—a shock is still able to develop. 
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Fig.  6.   Azimuthal density profile, for rotational state, l = 90* 

635 



Bowers and Win«or 

APPENDIX 

Numerical stability of the main modes present in the difference equations 

will now be demonstrated.   For clarity we consider limiting cases in which 

9 
one mode dominates.   Following Richtmyer and Morton,    small perturba- 

tions are assumed and the equations linearized. 

1.   Drift and Geodesic Acoustic Modes Without Average Flow on a Magnetic 

Surface. 
2 

Assuming a main mesh 2A*   X 2A0 X 2At, where, in Fig, 2, 2A0 is the 

distance between points A and C, the significant terms in the auxiliary density 

calculation yield (assuming f =  Lr/ZvR = 0) 

n     (r,0).n(r.0) + -^sin0^-   +   g* j 

AtVd    t t 
+ 57^ [»('=« + « -n(r,0 -1)]=0 , (Al) 

where 

n* = [n'fr+l.tt + n'fr -1.0) + n*(r.fl + D + nV.ff - l)]/4 

On the main mesh, 

n      (r.fl) - n (r,fl) +      -g    sinfl -g^  

AtVd     t+1 N-l 
+ -^-[n+\r.0 + 1) - n*l(r. 6 - 1)] = 0       . (A2) 

The change conservation condition yields the average potential on a magnetic 

surface, 

«TM-1     aTt-l     2At Bv 
2 

ü_    . 2i_   .    1 )   n (r.fl.) jinfl.AÖ = 0      . 
8r        8r ncR»       L J J 

(A3) 
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Here,  v    is the thermal velocity   (£KT/m) ,    and the summation is 

taken over all values of j, representing the closed integral over a magnetic 

surface.   If we now let R -*» and assume 30/cJr = 0 in these equations, and 

substitute for the auxiliary density in Eq. (A2) from Eq. (Al), we   >btain 

t+2 t *tVl        t t 
n*'(r,9) - n (r,0) + ^-2- { [n

l
(r + L> 0 + i) _ n

r(r + 1, 6-1) 

+ n*(r.  6 + 2) - nV, 6 - 2) + n*(r -1, 0 + 1) 

- n*(r - 1, 0 - l)]/4 

AtVd     t t t 
"   2rÄe   [n(r,e+ 2) "       (r,e)  +      (r'6 "2)1^  =°    ' (A4) 

Taking an average over surfaces of the form 

nl(r + 1,  6 + 1) + n> - 1, d + 1) S 2nt(r,0 + 1)   , 

and assuming a variation of exp(im0), we obtain 

Te 
t+2       t f. n       = n    1 

iAtVd 

1 - -j——jj—(sin 2mA0 +  2 sinmAÖ) 

„e    2 

- (7^/ )   (1 - cos 2mA0)j . (A5) 

Wilting n       =   Xi_ , numerical stability requires   | A | <  1, which is satisfied 

provided 

At<J^ . (A6) 

■N/2 VJ d 

The difference equations for the geodesic acoustic mode are obtained by 

letting   V*  — 0 and keeping R finite in Eqs.  (A2) and (A3).   This reduces 
d 

to the same form considered in Ref. 1, which has shown numerical stability 

of the mode provided 

At   <   -*— (A7) 
N/2 v 

T 
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2.   Parallel Acoustic Mode with Flow Present. 

Considering the case V   = 0, R -* » but f finite, the auxiliary density 

and momentum calculations yield 

t+1    -t .   AtV    . t t    , ne  ' ne+ iTZe (Vi" Vil 

.   Atf   .    t t 
+ 2rA"e(nvb.e+i-nvb,e-i) 

t+l       —t       ,   AtV   .    t t 
nvb,e ' nvb,ö +7r^e (nvb,e+i" nvb,«.i» 

Atvrf t       t 
+ -2rA?(n0+l-Vl) = °        • 

(A8) 

(A9) 

Here, V represents the average poloidal flow on a surface and nv.   is 
b 

averaged in the same manner as the density appearing in Eq. (Al).   The 

difference equations on the main mesh are: 

t+2       t   .   At^  . t+l       t+l 
ne    - nö * TÄ6 {RM ' Vl) 

Atf   .    t+l t+l     . 
+   r^ö(nVb,0+l  ■nvb1fl-l) = ° 

(A10) 

t+2 t       ,   AtV .    t+l t+l     . 
nvb,e' nvb,e + 7& (nvb,e+i - nvb,e-i) 

L     AtVTf,t+l W. - 
rAe x e+i    e-i 

Eliminating the auxiliary quantities in Eqs.  (A10) and (All), by use of 

Eqs. (A8) and (A9). yields two equations which can be put in the form 

t+2 .    t x =   Ax    , 

where A is a 2 X 2 matrix and x   is the vector x   = (n , nv, ).   The eigen- 

values of the matrix are: 

(All) 
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iAt 
X = 1 - J*-Q (V ifv J(sin2mA0 + 2 sinmA0) 

/ \2 

-Ä[V £ f vT]J     (I - co8 2 mA0)      . 

By analogy with (A5), we have stability provided: 

At   < 
rAfl 

-& (f v   + | V | ) 
(A12) 

In practice, a time step of 0. 5 jisec was sufficient to keep all the modes 

numerically stable for the typical stellarator parameters quoted in the text. 

Finally, we give the differential equation which uses the Lax-Wendroff 

procedure to time-advance the parallel momentum: 

lr(nVb) + -^2   fc[rN2(nVr+   Trb>J 
rN 

hrN 
b  s        sb Nhr    30* 

SKTf    9n       _i 
mhr    30 

rh  N 
— (nvrvb +  Trb) 

f sin0,    2 .     /  f       3f \  , 
+    -.-.     nv    +  T    ) + ( TT - T-     nv v   +  T        =0 

NRh s ss      \Nr      9r/        r  s        rs 

Here,   T   is the traceless stress tensor defined in tne body of the paper, 
at 

divided by the mass.   Notice that the smallness of f ensures that the non- 

conservative terms will be unimportant compared with the conservative 

terms. 
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Simulation of Infinite Space on a Finite Computer 

O. Buneman* 
E. E. Department 

Stanford University 
Stanford, California 

Two new schemes »is presented for Imposing boundary conditions which 

simulate charge-current free space outside a computed field domain.    The 

first  applies to static fields (Poisson's equation),  the second to radiating 

fields (Maxwell's equations). 

I. Static Fields 

When infinite, effectively charge- and current-free space surrounds 

the domain in which one simulates interacting charges and/or currents, 

appropriate boundary conditions must be imposed on the periphery of the 

domain, to simulate the outer void. For static fields Hockney evaluated, 

in sone of his simulations, the cylindrical harmonics of the potential 

created by the internal charges or gravitating masses on the periphery, 

2 
while Hohl et al.  truncated the interaction kernel, used periodic boundary 

conditions and restricted charges or masses to the interior quarter (i" 2D) 

of the computed domain. 

A new scheme was developed which resembles Hockney*s scheme.  It 

assumes that a Polsson subroutine is available which returns the poten- 

tials within a domain for specified interior charges and specified 

peripheral potentials. These peripheral potentials are to be evaluated, 

prior to calling the Polsson subroutine, by applying the direct inter- 

action kernel to the interior charges. 

It might be argued that the direct interaction kernel, if used at 

all, could be used throughout, for calculating potentials in the interior 

Work done, in part, while on leave as ESRO Fellow at BSRIN, Frascat i . 
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as «ell as on the periphery. This latter scheme «as found uneconomical 

3 
by Hockney and therefore the proposed use of the direct Interaction 

kernel on the periphery must be Justified against objections on grounds 

of economy. 

The arguments against the kernel method apply only when the number 

of particles is large. It is then better to solve for the potential 

over a grid after recording the charges (masses) in the form of a density 

array. He consider, therefore, the task of calculating the potentials 

in the peripheral cells due to the array of the charges located at the 

centers of the internal cells. For a square array (in a two-dimensional 

simulation) of H by M cells we get kH      kernel operations. 

Since the interaction kernel is an inverse square root in three 

dimensions, a logarithm in two Cartesian dimensions and an elliptic 

integral in R-Z geometry, pretabulation of the kernal is essential. 

Even taking into account some symmetries, the storage requirements for 

the proposed scheme would be prohibitive in most cases. And e-'en given 

a stored kernel array, the number of algebraic operations in its appll- 

cation would normally exceed the number of algebraic operations (^M^log H) 

in the direct Poisson solving routine. 

II. Cubic Interpolation 

To make the scheme feasible, wo propose admitting slight imper- 

fections.  In tha first place, we only calculate the potential at every 

fourth point on the boundary and fill In the remainder by cubic Inter- 

calation.  If there Is no charge very near the boundary, the imperfec- 

tions of the boundary potentials will not propagate to the charges, 

remembering that any error pattern is attenuated by e  ' across a 

distance comparable to its own period. 
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However, not only do we use cubic interpolation at the output end 

of the kernel, but we likewise interpolate cublcally at the input, in 

the two (or three) dimensions of the charge array. Again, provided 

that ther« is no charge near the boundary, the errors will not be felt. 

In practice, the procedure is as follows: 

(1) Condense the charge array by a factor '; in each dimension, 

keeping the charge in situ at every 4th co-ordinate value and re- 

distributing the three intermediate charges among their nearest neigh- 

bors. This re-distribution is done in such a way as to conserve moments 

of the charge distribution up to, and Including, cubic moments. 

(2) Propagate the effect of the contracted array of charges to 

every fourth point along the boundary by means of the interaction 

kernel. 

(3) Interpolate cublcally along the remainder of the boundary. 

This procedure is equivalent to a rigorous full evaluation of the 

boundary potentials using a short table of the kernel and Interpolating 

cublcally from this table where necessary. It is inaccurate only to 

the extent that such cubic interpolation in each of the variables of 

the kernel nay be inaccurate. In other words, it is sound, provided 

we stay away from the singularities of the kernel. These occur when 

cause and effect co-ordinates coincide. This means the charges must 

stay away from the boundaries. 

Typically, we might olay safe and restrict charges to only the 

internal three-quarters of the full domain in each dimension.  In a 

two-dimensional square domain this means there are only (9/l6) M 

charges before contraction. Then, after contraction of the array, we 

now have only (9/2^6) M kernel operations to get the short table 

of boundary potentials. Our original count has come down by a factor 

exceeding 100. The scheme is now feasible, from the points of view 
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of both operational speed and kernel storage. 

The cubic Interpolations and re-distributions have yet to be 

accounted for. These are carried out in several stages, «hen inter- 

polating, one first finds the values at the Mid-points between given 

data, using only linear interpolation: an add and a binary shift. One 

corrects this to cubic Interpolation by adding the four nearest neighbors 

with «eights -l/l6, +1/16, +1/16, -I/16: four adds and one shift by four 

binary places. Hiving thus interpolated the aid-point values, one re- 

peats the process to get quarter-point and three-quarter point values. 

The re-distribution is carried out with exactly the same weights. 

Every odd-indexed charge value is re-distributed between its four nearest 

even-indexed neighbors, and subsequently the charges with twice-odd 

index are similarly re-distributed among neighbors with indices divisible 

by four. This is done in each dimension. 

Since re-distribution and interpolation employ only adds and shifts, 

with no table look-ups, they are extremely fast and do not impede exe- 

cution significantly. 

Example 

The whole scheme was put to the test in r-z geometry. An r-z 

Poissoc solver was available for a fcA by 128 grid, the long dimension 

being in the axial direction. The periphery consisted of two lines of 

65 grid points radially and one line of 127 points axially. This was 

reduced to two lines of 17 points and one line of 3* points for the 

interaction calculation. 

Internally, an original array of k<)  by 97 charge points was reduced 

to 13 by 25. The kernel K(r ,r , |z -s |), being symmetric in r^     and 

r ,    required only 29 x 17 x (17+l)/2 = hkyj  locations, and even some 

of these remained unused so as to become available for other purposes. 
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The number of multiplications in the kernel operation was 13 x 25 * 

(2 x 17+31) = 21125, rather less than the number of multiplications in 

an r-z Poisson solver over a.6^ x 128 grid. This was borne out by timing 

of the runs. Even including the charge-«fray contraction and the inter- 

polation, the subroutine for establishing the peripheral potentials took 

less time than solving Poisson's equation. 

The precision was tested by calculating the potential due to a single 

ring of charge and moving this ring from positions requiring re-distribu- 

tion to positions which were subjected to the kernel operation directly. 

To the overall accuracy available (approximately sixteen bits) the 

potential pattern was insensitive to ring position - in fact it agreed 

with thj direct kernel values everywhere. 

From these tests one feels encouraged to reduce the "no mans land" 

between the charge and the outer boundary. Probably a zone of four 

meshes would give acceptable results in general. 

III. Radiating Fields 

Maxwell's equations, 

1  x 
c at 

3B   dB 

By   dz     x 

, dB   3E   5B 
1  x _  y_    z 
c 3t  " dz   öy 

(0 

(2) 

(x,y,z cyclic) 

can be programmed sequentially and to central-difference precision with 

no sophisticated algorithms, since these equations, unlike Poisson's, 

are hyperbolic.  Fourier transforms are not needed. 

Difficulties arise only over advancing field values at the boundary 
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of the domain covered by such sequential computations. The "causal" 

(retarded) solution is automatically built up in the interior, and «e 

consider the case where no exterior currents are flowing, so that there 

should be no incoming fields. Then we must program the Sommerfeld 

radiation condition at the boundary: there should be outgoing waves 

only. 

This condition is itself formulated in "wave" terminology and 

t'-ieiefore it will be necessary to diagnose wave structure in our fields 

although the algorithm for calculating the interior fields mikes no 

reference to waves.  It does not seem possible to formulate the radia- 

tion condition as a purely local condition - some linear relation be- 

tween field components at neighboring points. 

We have studied this problem for a simple geometry, in the first 

place, namely the "periodic slab". The domain for computations lies 

between x = -x  and x = x  say, while in y and z it is infinitely 

extended, with a strict periodicity condition on currents and fields in 

both y and z. This is the problem encountered in sheet pinch simula- 

tions. 

The periodicity of the fields eliminates boundary problems in the 

y and z dimensions.  In x,  we have the condition that for x i x 

the fields should travel towards +«• and for x s -x  towards -•. 
o 

In order to formulate this as a wave condition, we must Fourier trans- 

form the fields at x = x  and x = -x  (but not in the interior) 
o o x     

in both y and z. The periodicity comes in useful at 'his point. 

A record must be kept of each transform for all times, but since 

it is only called in one« each time step, external storage is satis- 

factory. 
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Without going Into the details of «hat happens to each of the six 

field components, we present here only the general formula for advancing 

a quantity A (such as a magnetic vector potential) that solves the free- 

space wave equation. In the region x Ss x  beyond the computer-handled 

domain it can be advanced on the boundary x - x     In accordance with 

A(t) = -c £  (-g) ( J0[«0<t-f)] «f (3) 

or 

1 oA   a*     /* I &\ 
c oT= " ax     o 7   \ax;    J,I>> (t-f)] «• (4) 

t* 

2   2   2  2 6 7 
where a>  = c (k +k ). Proofs will be found In the literature. " 

o     v y  z ' 

The second of these formulas Is probably more appropriate: since 

J.(0) s 0, the "present" is separated in the first term from the "past" 

in the second term. The formulas are plausible: by Huygens's principle, 

signals are reflected back into the slab from outside, there should be 

a periodicity associated with the wavelength, and a weak geometric 

attenuation as indicated by the inverse square-root asymptotic decay 

of the Bessel functions. Unfortunately, this attenuation is too weak 

for it to become practically permissible to write off the earliest in- 

formation on the Fourier components. 

These formulas for advancing boundary conditions are presented here 

for their potential use: they have not yet been implemented in -any 

actual programs. Simulations of the sheet pinch were done, hitherto, 

with s more primitive approximate boundary condition amounting to 

taking only the first term in (k). 
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Coping with the Singularity at 
the Axis in R-Z Geometry 

O. Buneman* 
E. E. Department 
Stanford University 
Stanford, California 

2/J In r-z geometry there is a centrifugal acceleration L /rJ acting 

on particles with angular momentum L per unit mass. The numerical prob- 

lems arising from this inverse cube singularity are eased by working with 

2 
s = r  as a variable: Only a simple inverse singularity remains in the 

2   2 
equation for d s/dt . A time-symmetric algorithm for advancing particles 

in s and z was found which gives exact orbits In a parabolic bowl 

(0 <x s + z ). The finite-difference Poisson equation is also simplified 

by going to a as radial variable. The domain near the axis is weighted 

according to its volume and the finite-difference recurrence relation for 

the Fourier harmonics can be terminated o.i the axis in a convenient manner. 

I. Canonical Angular Momentum and Effective Potential 

R-Z geometry is popular for simulations, not only when axisymmetric 

boundaries call fo*' it, but also when a three-dimensionally bounded sys- 

tem is to be simulated by means of only two space variables ("two-and-a 

half dimensional simulation"). This is achieved by imposing axial symme- 

try, but axi-symmetry does not mean that motion about the axis is ignored. 

All particles can possess some angular momentum about the axis.  However, 

for every particle with given r, 9, z, r, 9, z there are others with the same 

r. z, r, 9, z but different 9, and their distribution in 0 is uniform. 

Work done- while on leave of absence as ESRO Fellow at ESRIN, Frascati. 
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As a result, particles can be grouped into rings of charge. We 

trace these rings in r and z. We record r, z and we keep a tag on 

the value of the conserved angular momentum r 6 per unit mass. Owing 

to the axial symmetry of the charges, there will be axial symmetry in the 

fields and hence the angular momentum is conserved. It can therefore be 

stored as the first few bits of the particle index. 

In the presence of an axisymmetric magnetic field (which can be 

derived from a magnetic vector potential with only a 6-component, A(.), 

it is the "canonical" angular momentum per unit mass, 

A = r 9 - (e/m)rAg(r,z) , (1) 

which is conserved.  The combination of axisymmetric electri" and mag- 

netic fields, static or slowly varying, leads to the dynam.cal equations 

for electrons: 

where 
r = a*1/or ,   z = atVaz (2) 

il = * - \ (AQ + Vr)2 , 13) 

after normalizing away the mass and charge of the electrons. 

Since 2jtrA. is the magnetic flux through a loop of radius  r, and 

2 
since this flux is of the form «B   r + higher even powers of  r, 

the difference between the effective potential $  and the electric poten- 

P  2 
tial *  is an even function of r, the lowest power being A /2r . 

Moreover, the charge density near the axis should be a regular power series 

in x and y for each z.  If it is to be independent of 0,  it must 

2   p 
be developable in powers of (x + y ). Thus the entire potential is an 

even function of  r. 
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II. Use of the Square of the Radius 

Equation (2) show that the radial acceleration becomes Infinite like 

A /r  near the axis. This leads to no end of numerical trouble and since 

_ 2   2^2 s a r = x + y CO 

might be a better variable against which to tabulate the potential, one 

Is motivated to write the dynamical equations in terms of s.  In a pure 

electric field this leads to: 

as        2s 

2    3 and one observes with gratification that the centrifugal force,    A /r , 

has been changed from an Inverse cube singularity to the much milder 

2 
simple inverse singularity.    A time-symmetric    finite-difference version 

.2 of the dynamical  equation for    s    results from interpreting    s      as 

s      s , .: new old 

As   = As. ,    .. ^ + 
new    intermediate 

As ,„-Ae, .    ., . + (2AAt)' old  intermediate  v   ' 
2s - As 

old 
(6) 

with 

intermediate = &8old + Wso*/os (7) 

eud this equation has been programmed into the subroutine for advancing 

particles, "ADVA".  (Th« finite difference equation for advancing z 

is trivial.) 

Subroutine "ADVA" has been tested for a parabolic bowl potential, 

$  = -z ' -  s.  In this potential each Cartesian coordinate performs 
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simple harmonic Motion and hence a should be harmonic with twice the 

frequency. Indeed, one chedks that the finite difference version above 

possesses exact sinusoidal solutions for a potential which is linear in 

s. The Computer reproduces these solutions to »»chine accuracy and so 

all is «ell. 

III. The Solution of Polsson's Equation 

Since tabulation of potentials versus s is required rather than tabu- 

lation versus r, one would naturally solve Polsson's equation in e, 

namely: 

"$*»*♦§•-%• (6) 

If, in the display of the grid, we think of radius or s as Increasing 

from left to right, while z Increases down the page from top to bottom, 

the finite-difference version of Polsson's equation in s becomes: 

(WAs)»left - 8s*centre ♦ (W2As)»rlg|n 

A»2 

$           - 2$ + i below centre   above    g (9) 

Az2 = " 'o 

For the harmonics which go like exp(±ikz) the second term on the left 

becomes 

-2(l-coskAz) . 
. 2     centre 
A* 

Multiplying the finite difference equation by    AsAz/2    one obtains the 

recurrence relation 
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As 
(S»-1)*,,-! " ^ + £ U-coskAz»»^^!)»^-^ (10) 

th 
where n = s/As and a  Is the (suitably normalized) charge in the n 

radial cell, Fourier-transformed in z.  (Notice that here is another ad- 

vantage of "s" over "r", in that As = 2rAr contains the factor r 

necessary for converting point charge density to ring charge density'.) A 

value As/Az = 64 «as used in tests and production runs, giving satis- 

factory resolution near the axis as well as away from it. 

To find the conditions on the axis, n = 0, we postulate that the 

finite difference form of Poisson's equation shall give correct answers 

for potentials which consist of low powers of z multiplied by low powers 

of s. One then obtains, for the start of the recurrence relation: 
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-(2 + ~ (1-coskAz))^ +  tx = -2qo (It) 

«here q  '.s the charge in the interval 0 < s *■ As/2. 

The trldiagonal system (10), (11) should be terminated at the outer 

boundary in accordance with the conditions prevailing there.  It can then 

be solved by Gauss elimination, equivalent to an outward and inward (in 

that order) march. Since the coefficients are variable, this is more 

economical than solving by "cyclic reduction", the scheme explained by 

Hockney. 

Both the particle mover "ADVA", and the s-z Poisson solver des- 

cribed here, were used successfully in a simulation of the photoelectron 

sheath which surrounds a satellite lit by the sun on one side. 
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Quasi Three-Dimensional Particle Code for Simulating 
an Anisotropie Plasma 

Ä. N. CartOe 
Department of Electrical Engineering 

University of Arizona 
Tucson. Arizona 

ABSTRACT 

This paper describes a 2-1/2 dimensional simulation code in 

which the coulomb force on a simulation rod is two dimensional while 

the lorentz force due to an external uniform magnetic field is three 

dimensional.    A method for moving the particles is described in which 

new velocities and positions can,  in principle, be calculated which 

are accurate through fourth order in the time step.    Finally,  the 

linear behavior of the code is examined in which it is found that 

Bernstein modes are the normal modes of the system. 

A.    Introduction 

This paper describes a two-dimensional particle code, which is 

an extension of that discussed by Kruer and Davson      ,  in which particles 

are simulated by extended charged rods constrained to be parallel to the 

i axis, but otherwise free to move, so that each rod is completely des- 

cribed by the coordinates  (x,y,w ,w ,w >.    This situation is depicted 
x y z 

in Fig. 1. The force per unit length In the z direction which the 1-th 

rod may experience consists of the self-consistent coulomb force, 

656 



Quasi 3D Particle Code 

0R00 
(N'20,736) 

ix^ytWjiiWyiW^ * 

Fig. 1.   Basic cell for simulation code.    N is number of rods in the basic cell. 

E.F.,  E. « 1 (ions) or,  - 1 (electrons), and a lorentz force due to an 

externally imposed homogeneous magnetic field B of any desired three- 

dimensional orientation.    Periodic boundary conditions are used.    This 

code is ideally suited to simulate plasmas whose behavior can be described 

by electrostatic waves with coplanar wav>  numbers. 

B.    Moving the Particles 

Of particular interest  Is the way that the particles are advanced 

in time.    The equation of motion of the i-th rod is 

mi -   - E.F.  + n e e, w.  x B n     —   mr.        ii        o      ii o    tae      el 
(1) 

where n m. and n e are the mass and absolute charge per unit length of 

the rod (n is the number of rsal electrons or ions associated with a 
o 

unit length of the rod).  In (1), m is the mass of the real particle 

associated with the 1-th rod, either the electron mass a ,  or the ion 
e 

mass.  If we normalize all distances to the Debye length X_ and times 
D 

to the electron plasma frequency u of the real plasma, then, for 

electrons, (1) becomes 

657 



Oä* 

where 

R - 

d2R m dV 

dt2      dT 
m     m. E + GV (2) 

Ijxl w  ./X„u 
xi    D p 

VXD ,    V - w  .A_ü) 
yi    D p • 

0 

^^ 
W    . A_(i) zi    D p 

F ,/n m (n2Xn xi    o e p D 
ü -cos6        sinösinS 

F  ./n m (i>2X_ 
yi    o e p D 

,   G - a cos8 0        -sin6cos6 

0 -sin8sin6 sin8cos6          0 

eB/me 
u t 
P 

(3) 

Equation (2) is the normalized equation of motion of a particular rod; we 

have suppressed the subscript i. The view is now taken that all the 

dynamical variables vary continuously in time. One then makes a Taylor 

expansion of the velocity of V about the time t    ■ nix, and 

of the position R about t . » (n + a)At, where AT is a finite increment 
n+oi 

in time, the time step, and 0 <_ a <_ 1. 

i. Stepping the rod velocity 

In storage after the n-th iteration is tne rod velocity  V(T ) 

at T  and the position R(T , ) and information such that the coulomb 
n        r n+c 

force E(T . ) can be calculated on our typical rod, at T . . We now make 

a Taylor series expansion of V about T and evsluite it at T ... 

v(T„4.i> " V'-TJ  + V'(T)AT + V"(T ) ^.-+ ...      (4) n+l     n      n        n   I \ 

and 
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V(a)(T  ) - - E(-1)(T  )  - GE(B-2)(T )  - G2E(-3)(T ) n n n n 

-   ...  - Gm_1E(T  ) + G" V(T  ) (5) n n 

where V   ■ d »/dt ; a similar convention will be used to denote deriva- 

tives of other dynamical variables. In obtaining (S), we have used (2) 

successively. Now, we have E in storage for T  , but not for T . 

Therefore, we make a Taylor series expansion of E about T   and evaluate 

it at T : n 

»w«v ■ E'"'««.> ♦E<-H> <W<—>* E<""».«' S=^L 

+ ... (6) 

When (6) is substituted into (5), we obtain Taylor coefficients which are 

functions of V(T ), E(T , ) and derivatives of E at T . . The latter we n *   n-ta n+a 

do not have in storage. However, if we choose a ■ 1/2, we can make the 

derivatives disappear from all coefficients up to and including AT2. We 

then have, fo^ a ■ 1/2, 

E(Tn+l/2
) V(tp+I) - I  (AiG)n/n! V(xn) - ill I  (ATG)n_1/n! 

[n«o |n»l || 

+ AT3 [^GE'(Tn+1/2)-iE»(xn+1/2)] 

+ ^ [2\GV(xn+1/2)-^GE"(Vl/2)] + ... 

(7) 

The eigenvalues: of G are 0, ±j, j ■ f-l  . One can then show 

that the first operator in the brackets in the first line of (7), L, 

[2] 
can be written   as a second order polynomial of G: 
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L - eAx G - 1 + ainAt G + (1-COSAT) G2 

The adjoint (transpose) of this operator is equal to its inverse, so L 

is unitary. If E - 0, this property would guarantee that the kinetic 

energy of a rod would be exactly conserved. 

The second operator in the first line of (7) can also be written as 

a second order polynomial of G. We have finally, 

vv- .,) - [I + sinAt G + (1 - cosAx) G2] V(T ) 

+ [- AT + (X-COSAT) G - (AT - SIIIAT) G2] E(T  /2> 

♦ Ax' [-L GE' (tn+1/2) - i E" (tn+1/2)] 

+ **[£ G2E
'(VI/2>-W

GE
" <Vl/2>]+-" 

(8) 

2.    Stepping the rod position 

After the v  locity V(x  ) has beer, transformed according to  (8), n 

the new velocity V(x    .) has replaced it in storage.    We now make a Taylor 

expansion of R about x  .. ,n and evaluate it at T +3J2*    Noting that V ■ R' 

and using (2), we can express the coefficients of this series in tenva of 

V(T  ,,) and E(T   .,/,) and derivatives of E at x   ,, .« as  follows: n+1 n+1/2 n+1/2 

R(V3/2> " «Vl/2> + AlV(W 

*'[£ <G2V<Vl> " GE<W2»" fi E,(Vl/2>] 

^I^GE'(Tn+1/2)+iE^xn+1/2)] + 

(9) 

Note that R is a two element vector. In (9), V should be reduced to a 

two element vector by eliminating the z component, and G and G2 should 
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be made Into 2 by 2 Matrices by abandoning the third row and column 

fraa each. 

In examining (8) and (9), we see that If we do not haw avail- 

able derivatives of E, the error in computing V(T  ) and R(T +1/2) 
i8 

of order AT3. Further, the largest error comes from E'. If we arc 

computing 3 by the nearest-grieHolnt approximation, then it we are 

willing to store E(T„_i/2)» *e can cospute E'(T +1/2)« 
If there are 

M grid points, thit would require 2M additional words of storage. For 

this modest increase in storage, we can, in principle, compute the co- 

efficient of AT3 for R. Tf it. addition, we also «tore E(T ,._), an 
n—J// 

additional ?M words, we can compute E"(T . .„) and thus compute the 

coefficients of AT3 and AT1* for both V and Rl Although this additional 

storage is not excessive, it is doubtful if it is worthwhile to do this, 

because computing E from Polsson's equation at the position of the rod 

may cause errors much greater than those obtained by neglecting the co- 

efficient of AT3 and AT1
*. 

Equations (8) and (9' are exact up to and including terms of 

order AT1
*. The role of the quantities E' and E", normally not retained 

in storage, in producing an error in V(i .) and R(T A1 ,,) is clearly 

shown. If E»0, kinetic energy of the rods is conserved. 

C. Linear behavior of the code 

The rods in the code described in the introduction have been 

stepped according to (8) r.ad (9) where all terms of higher order than 

AT
2
 i:*ve been eliminated. The size of the extended particle was chosen 

bo that the ratio of collision frequency to u is approximately .01. 
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The number N of simulation rode In Che "basic cell" is 5184 and the 

number of rods per Debye square is about 5. The dipole term in the 

Dawson-Kruer Code   «as retained, in dictating a precise determination 

from Poisson'a equation of E at the rod. Ion rods were held fixed. 

The tocal energy of the system, electric plus kinetic, is shown 

in Fig. 2 as a function u£ time for various time steps. It is seen that 

for T • (i) t < 25, energy was conserved cj-ite precisely for time steps 

up to 0.20. For Ar ■ a it ■ 0.20, the total energy changed by one part 

in 1535 over 125 iterations (T ■ 25). For AT ■ .1, the energy changed 

by less than one part in 15,000 over 0 < T < 25. 

The normal modes with wave vectors in the plane perpendicular 

to a uniform magnetic field in a homogeneous plasma are Bernstein 

[3] 
modes  . Dispersion curves for these modes are shown as the solid 

curves in Fig. 3. These modes are not subject to Landau damping, and 

will only be attenuated by colllsisnal damping.  In our simulation 

plasma, they should be present. As in a real unperturbed plasma, they 

will be present at low power level, their amplitude being determined 

by equilibrium between the excitation process of Cerenkov radiation and 

collisional damping. 

Because of the periodic boundary conditions, the wave vectors 

of waves which can propagate in the simulation plasma are discrete. 

Arbitrarily selecting a wave number k^ which is ore of the discrete set, 

and which is perpendicular to the magnetic field, we let the code run 

until T - T. We sampled the spacial Fourier amplitude A,  belo. iing 

to k  every five time steps for 'c » 0.20. We thus have this amplitude 

as a function of real time A,  (T). We correlated this amplitude to 
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ao- 

ITJO ■ 

I6.0- 

-2.ac 
N-5IM 

IW  

Fig. 2.    Test for conservation of energy.    Total energy is sum of kinetic 

energy or rods plus energy stored in the electric field,    u    is the 

cyclotron frequency and N    is the number of rods per Debye square. 

AID t » AT,   the time step. 
P 

Fig. 3.    Dispersion curves for Bernstein modes (solid curves) and "experi- 

mental data" obtained from the simulation code  (dots),    ft    is the 
e 

cyclotron frequency,  k.  is the wave number and p  is the Larmor 

electron radius. 
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suppress incoherent noise, then computed the frequency spectra» of the 

correlated A.  (T), «here the fundamental frequency is 1/2 T/2ir = u /u . 
"j. ° P 

One could clearly discern aajor peaks in the spectrum corresponding to 

frequency compouents coherent over the time T. The frequencies of these 

peaks are shown as the dots in Fig. 3. The error bars represent an 

error of tu /u . 
o n 

The coherent signals evidentally are Bernstein «odes because of 

the goou fit with the dispersion curves. The data in Fig. 3 were obtained 

for the magnetic field along tl.e z axis, i.e., 6 ■ 0 in Fig. 1. However, 

almost identical data was obtained with the magnetic field along the x axis 

and kx chosen along the y axis. 
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Numerical Techniques Applied to the Computation of 
the Dispersion Relation for Perpendicularly Propagating 

Cyclotron Harmonic Waves 

Jeno Gazdag 
IBM Scientific Center 
Pah Alto, California 

Abstract 

A computer simulation study of the dispersion relations for Cyclotron 

Harmonic Waves (CHW) is presented.  A two-dimensional particle model 

is used to simulate CHW oscillations in an infinite uniform Maxwellian 

plasma in a plane perpendicular to an externally applied constant 

magnetic field.   The resonant frequencies of the computer plasma are 

compared with those predicted by the linear approximation theory for 

small perturbations.   The numerical methods used are known as the 

Nearest Grid Point method and the Particle in Cell method.   The dltierence 

in these methods do not appear to affect the results significantly except 

for the ability of the computer plasma to conserve energy.   The operation 

of smoothing the electric field is also considered as a means to better 

energy conservation in the computer plasma. 

1.    Introduction 

A warm, uniform magnetoplasma can suppoit longitudinal electron 

waves.   The propagation of these waves is restricted to passbands 

associated with the harmonics of the electron cyclotron frequency. 

Because of this they have been called Cyclotron Harmonic Waves 
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(CHW).   These waves are characterized by phase velocities slow 

compared with the velocity of light and have parallel propagation and 

electric field vectors (kl IE) .   They were studied by several investi- 

gators in the 1950's.   A comprehensive description of the subject was 

given by Be-^stein in 1958 [l].   The existence of these waves has 

been confirmed by experiments [2,3].   A number of experimental results 

which can be explained in terms of this type of wave motion are dis- 

cussed by Crawford [4,5]. 

An alternative means of experimenting is offered by the simulation 

of the plasma on a digital computer [6,10],   A "computer experiment" 

differs from a typical computation of a theoretical result in that 

Instead of evaluating mathematical expressions which describe some 

laws of nature, we make the computer simulate the physical system. 
3        5 

The plasma is modeled by a large number (10   - 10  ) of particles. 

... attribute individuality to the particles by following them in space 

and time.   Their dynamic behavior is governed by Newton's law of 

motion and Maxwell's field equations.   This u.K|.:::-?*> is generally 

referred to as the "Lagrangian" model.   A computer model of this type 

is used much the same way as a real experiment.   The model gives 

a time-dependent simulation and macroscopic averages are evaluated 

when measurements are required.   Thus, we test for instability, for 

example, by observing whether or not certain disturbances grow rather 

than finding analytically complex values of   i   fcr an assumed time 

dependence exp(ij;t) . 

The woik reported in this paper is concerned •n.iinly with the computer 

simulation study of the dispersion relations for cyciOtron harmonic 

waves propjyating perpendicularly to the externally applied, constant 

magnetic field   (k_LB)   .   We compile tne dispersion relation for such 

oscillations from the time responses of the computer plasma.   Periodic 

boundary conditions are used to simulate an infinite uniform Maxwellian 

plasma for which the dispersion relations have been derived through 

small-signal linear approximation theory [1,4,5].   We use these 

analytic results to estimate the accuracy of the dispersion .e.'ations 
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obtained from the computer simulations.   We find excellent agreement 

between the results of the computer simulation and those predicted 

by the small-signal theory. 

The numerical simulation techniques which we use are known as 

the Nearest Grid Point and the Particle in Cell methods.   The most 

significant difference between these methods is found in their energy 

conserving properties and the speed of computation.   The idea of 

smoothing the electric field is considered as another means of 

achieving better energy conservation in the computer plasma. 

The main objective of this study has been, in general, to fird 

out the requirements for reliable plasma simulation and to leam about 

the limitations of the computer plasma model.   The work reported 

here should be regarded as a prelude to an undertaking where the 

long-term goal is to study problems which do not lend themselves 

to analytical treatment.   It is hoped that the simulation of linear 

dispersion relations will serve as a stepping stone toward more 

practical problems complicated by nonlinearlties, inhomogeneities 

and finite boundaries. 

The organization of the paper is as follows.   Section 2 describes 

the computer plasma model.   Section 3 deals with the numerical 

experiment.   The discussion of the results is given in Section 4, 

here we make comparisons with the results of the small-signal linear 

theOi/.   Section 5 is the summary of our experience using different 

methods.   Section 6 concludes the paper. 

Computational Models 

2.1        The Purpose of Particle Models 

Particle models [6-131 are attempts to simulate the behavior of 

a fully ionized plasma whose collisionless approximation satisfies 

the collisionless Boltzmann equation with the Lorentz force 
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Sf af       q v df 
-J + v .~i + -i (E+-XB)   .-r^ -  0    . 
dt     ~     dr      m   V~     c     —/       «v 

~ 8 ~ 

Eq. (1) describes the rate of change of the distribution functions f 

for particles of various types  s , charge q   , mass m    and velocity 

v   In the plasma.   E   and B   are obtained from Maxwell's equations 

with the definitions of charge and current densities as 

(1) 

s        * 

J.«2>Jd3vvf8 
(2) 

In the commonly used models the simulation particles are assigned 

time-varying velocities as well as positions.   The motion of the 

individual particle Is obtained by means of the Newton-Lorentz equation, 

dv v 
~- 3. (E+-XB) 
dt       m \~    c      —/ 

The magnetic field B is the externally applied field. The electric 

field E is obtained from the electric charge density by solving the 

field equation 

" • E  *  4to 

The particle velocities  v  and positions  r   are computed as 

*♦* B X-*+(ä){l+¥*a}* 

(3) 

(4) 

(5) 

r .. - r    t v   ,  It 
—+1        ~~Q        *-+ff 
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The subscripts in Eq. (5) signify tine in unit of At .   If the particle 

positions used In computing the electric field  E   correspond to t«0 

values, then the velocities stored with them are those at t = -At/2 , 

where At is the time step.  The new velocity is computed at t = +£t/2 . 

This difference scheme has the very desirable property that it is time 

reversible [8,14]. 

2.2       Differences in Particle Models 

The most commonly used variations of particle models are the 

"Nearest Grid Point" or NGP, the "Cloud in Cell" or CIC and the 

"Particle in Cell" or PIC.   The difference between these models lies 

in die method of computing the electric field  E   over an Eulerian 

grid from die charge distribution defined by the particle positions. 

In the NGP model [7] the whole charge of the particle is associated 

with only one, the nearest grid point.   Similarly the field acting 

on the particle is assumed to be that computed at the same grid 

point.   In the PIC method [8] the charge of any particle is shared 

by the four surrounding grid points.   The amount of charge associated 

with die grids is determined by the area weighting procedure    hich 

is bilinear Interpolation.   The field acting on the charge is computed 

from the values at the four nearest grid points by using the same 

bilinear interpolation.   In the CIC model [9] the particle is regarded 

as a cloud of finite extent.   The charge of the cloud assigned to severa'. 

points of the spatial grid.   This is done by sharing the charges in 

proportion to the area of the cloud overlapping the cell centered at 

the grid point.   The total field on the cloud is found by summing up 

the partial fields.   The size of the cloud is arbitrary.   If the cloud 

size in the CIC scheme is equal to the size of the cell the resulting 

interpolation is equivalent to that of the PIC method.   The relative 

merits of these models were studied by Hockney [11,12} .   It appears 

that while the NGP model requires less computation than the others, 

it is characterized by greater fluctuations and lack of energy con- 

servation which can be undesirable under certain circumstances. 
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2.3       Description of the Computer Model Used 

The computer plasma simulations described in this paper were 

performed on a rectangular domain of size  L x L    .   The domain 

is divided into 64 x 64 uniformly spaced grids • The grid points are 

thought to be centered in cells whose dimensions are the same as 

the grid spacing.   The boundary conditions are assumed to ca periodic 

in both the x and  y coordinates.   Double periodic boundary con- 

ditions permit us to solve for the electrostatic field  E   directly by 

Fourier transform methods.   We do this not by solving Poisson equation 

• = -At o (6) 

for the potential   #   followed by the computation of  E   from 

E = -gradt (7) 

through a finite difference scheme.   In our model the partial differ- 

entiation is performed in the spatial frequency domain.   This is 

accomplished by multiplying the Fourier coefficients of   *   by their 

exact differential operator whose magnitude is proportional to the 

spatial frequency.   At this point we have the Fourier representation 

of both components of the electric field vector.   Thus, the electric 

field components may be subjected to smoothing operations independently. 

The smoothing which we consider in this paper is a simple suppression 

of the high spatial frequency components of the computed electric 

field.   A more precise definition of the spatial filtering used is 

given ir Section 5.   The NGP and P!C models in which the electric 

field is sut.   rted to the spatial filtering operation are denoted as 

NGP-S and PIC-S, respectively. 

The plasma model allows the simulation of an arbitrary number of 

particles.   Their initial spatial distribution is uniform over the domain 

so that they form an evenly spaced rectangular mesh.   The initial 

670 



Dispersion Relation for CHW 

velocity components of the particles  v    and  v    are computed in- x y 
dependently from each other by a Gaussian random number generator. 

Since the intended simulation has to do with electrostatic space- 

charge waves restricted to interactions which involve only electrons, 

the model simulates only electrons, while the ions form a rigid, 

uniform background. 

3.    Description of Experiment 

3.1       Definitions 

Observations ar^ limited to a few variables obtained by some 

averaging either over the entire domain or over the total number of 

particles.   With respect to the electric field and current density, 

we are only interested in the components directed along one, say 

the x-axis.   Moreover, we will be observing wave motions associated 

with the lowest (nonzero) spatial frequency or wave number.   More 

specifically, we are approximating 

L   L x   y 

E(t) * -j-~  I   I E
x(x'y.1) sin(kx) dx dy 

x  *o o 

(8) 

by computing 

64      64 

E(t) hi £ £E
x<vvt)sln(kv     <9) 

64x64  *-*   *-» "V'i ' ') 
J=l     i=l 

where 

t* Iff 
K     L x 

(10) 

and  x    and   y    refer to the grid points, i.e., 

x. = (1 + 0.5)   ~ l 64 
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y4 - 0 + 0.5) £ 

E(t) , as given by Eq. (9), is one-half of the amplitude of the  sin(kx) 

component in the Fourier expa 

current density is defined as 

component in the Fourier expansion of E (x,y,t) .   The corresponding 

Kt) = Y^r   2 q v
x

(T,'t)sln (kx(T''t)) (12) 
x
 y   TJ=1 

where  v (t),t)   and x(T},t)  refer to the TJ     particle and   *ft   is the 

total number of particles whose charges are q .   The kinetic energy 

of the system is computed from the expression 

Wkin(t)=;f   L*   (vJS«> + vJ«,.t)) (13) 
n= i 

The mass of the particle  m   is the electron mass multiplied by the 

appropriate magnification ratio.   The potential energy is approximated 

by 

64      64 
w

Pot(t) = ^E El^vv^^vv'O '   (l4) 
j=i i=i 

where   Ax  and   Ay  are the cell dimensions of grid spacings. 

3.2       Driving the Computer Plasma 

In order to observe the resonance characteristics of the plasma it is 

necessary to provide some external excitation.   We found that a single 

mode of oscillation could be excited vary conveniently by applying an 

external electric field. 

Z'x (x,t) = EQ stn(kx) sin(uut) (15) 
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over the domain L   x L   .   This external field Is applied for 5-1C 
/2#\       x      y 

periods  vJJ"/ •   If ou   is near to some natural mode of resonance   m 

of the plasma, and assuming that conditions are favorable, the plasma 

keeps oscillating with frequency  u>      after the driving source (15) had 

been set to zero. 

The dispersion relations can not be established conveniently from 

such a time response described above.   To obtain the frequency 

response of the plasma It Is desired to drive the plasma with a source 

which has a broad spectrum.   The most convenient method for 

doing this was found to be the application of an external charge at 

the origin of the domain, I.e., at grid point (1,1) for the duration 

of one time step.   This Is an approximation to a delta function In 

space and time. 

3.3        Choice of Parameters for the Computer Experiment 

Working with a computer plasma we face different sort of limita- 

tions than those found In real experiments.   The computer experiment 

Is characterized by coarseness which can influence the results.   In 

this section we define the operational parameters of the computer 

plasma and Indicate ranges where reliable results should be expected. 

For the sake of deflnlteness the size of the principal domain 

been £ 

frequency 

2 
has been set to 10 x 10   cm  , i.e.,   L   = L   = 10 cm .   The cyclotron x      y 

c      mc 

g 
was also held constant at 10   rad/sec.    These choices do not affect 

the generality of the results since all the variables of interest are 

expressed as multiples of  uu     .As for the value of L   , the results 

obtained are valid for any wave number If the same scaling is applied 

to the thermal velocity of the electrons. 
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We are primarily Interested in the dispersion relation for perpen- 

dicular propagation of CHW In a collislonless, homogeneous Maxwellian 

plasma.   This relation can be expressed In the following form [4,15]. 

(*\ i,    e-X   m2Im(X) 

a» ) 2-# T" 7T~T~ c/ m=l (üü/u) )   - 
(17) 

m 

where  I     Is the modified Bessel function of the first kind,     ID 
m p 

Is the plasma frequency and 

2      HT 
Vt=_m~ e 

(18) 

The proper value of the time step At      is of considerable Importance. 

The guiding principle In determining    At     was to allow at least 14At 

for the period for the highest working frequency of Interest.   In all 

of the experiments aimed to obtain the spectra of the electric field 

and current density we used 

At - 12 .       * 
t»    '   102.4 c 

(19) 

which assures somewhat better than fourteen samples/cycle even 

for the   7    harmonic of   *    .   Over 1024 tlmesteps,thls choice, Eq. 

(19), allows ten complete periods of a signal of frequency   ID 
c 

Furthermore, the line spectra obtained from Fourier analysis are 

spaced   O.lw      apart, a convenient value, c 
Another aspect of At     that must be considered Is the distance    s 

which an electron of thermal velocity   vt     travels In one time step 

as a    function of    X 

Eq. (18) we get 

yr = 

By substituting Eqs. (10) and Eq. (19),Into 

102.4v At 
(20) 
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1 

which. In view of 

:. 

I.   = 64Ax 
X 

becomes 

1.6v At 

A-   J      ■ 
i I 
; or equivalently 

s = 0.625 /T 

in units of  Ax .   The number of Debye let 

' 

(21) 

(22) 

(23) 

d     uu (24) 

per total length  L    ca-. be expressed in terms of   /T , ID     and  w 

by substituting Eqs. (18) and (10) into Eq. (24).   The result is 

xd >A ' \"ci 
(25) 

In the numerical experiments reported in this paper the value 

of   vX    did not exceed 3.   The ratio given by Eq. (25) wes always 

less than 2.9.   Since we consider only the longest wave, Eq. (25) 

also represents the wavelength of the oscillations in units of Debye 

lengths. 

4.    Discussion of Results 

We performed computer experiments aimed to determine the dis- 

rw  sion relations whose propagation vector   k    is perpendicular to 

tne externally applied, constant magnetic field    B   .   The plasma was 

excited by externally applied charge restricted to one grid point for 
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the duration of one time step.  At higher plasma temperatures, however, 

the internal fluctuations of the plasma dominated the effect of the 

impulse which was intended to be sufficiently small to assure linear 

behavior.   The length of the computer experiments were   1024At and 

2048At , where  At is defined by Eq. (19). 

The experimental verification of the dispersion relations is equiva- 

lent to finding the resonant frequencies of the computer plasma for 

given values of X  which is defined by Eq. (18).   This is done by means 

of frequency analysis of sufficiently long records, of the electric field 

E(t)   and the current density I(t)  which are defined by Eq. (9) and (12). 

Let E(jAt)   and  I(jAt) , j-0,1, ... N-l , be the sequences re- 

presenting the electric field and current density records obtained In  N 

time steps.   The finite Fourier transforms of these sequences are de- 

fined as 
N-l 

E(nAu») = J7 EÜ&t> exp(-inAuuj At) (26) 
J=0 

N-l 
I(nAuu) = V* l(JAt)exp(-inAu)jAt) (27) 

J=0 

where i =y/^T and nAou is the frequency. From these complex 

sequences E(nAuu) and I(nAu>), n = 0,l,... ,N-1, we compute the 

electric field spectrum j K(nAuj) | and the current density spectrum 

|l(nAou) | . Examples of these spectra are shown in Figs. 1 and 2, 

where nAu» Is replaced by <u . The number of time steps N and 

their length At determine the resolution of these spectra. This 

relation is expressed as 

*-& (28) 

If the value of At is given by Eq. (19) and  N=1024, then  At« = O.lu) 
c 

For twice as long experiments, such as the ones shown in Fig. 1-b 

and Fig. 2-b   Auu becomes  0.05ui   .   In order to estimate the maxima c 
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Figure 1.      Examples of electric field spectra as defined by Eq. (26) 
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Figure 2.      Examples of current density spectra as defined by Eq. (27). 

The SDacing between the lines is 0.1 w   in (a) and 0.05tu c c 
in (t;. 
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between the lines of the spectra, we used a simple curve fitting tech- 

nique.   A second order parabola was fitted to the end points of three 

lines - the one with the maximum value and its two immediate neighbors. 

The frequency of the local maximum was estimated by the location 

of the peak of the parabola.   The frequencies of these spectral peaks 

are given in Table I for a number of cases.   These frequencies obtained 

from the simulation are listed under "SIM .".   If no definite peaks 

are observed in the electric field or current spectra, the corresponding 

spaces in Table I were kept blank. 

Table I also contains the resonant frequencies predicted from 

the linear theory (TH.) .   These were computed from the integral 

representation of the dispersion relation for perpendicular propagation, 

Eq. (17), which is 

sin sin<p exp(X cos<p) d<p 

2 2ff 

= |_£\   exp(-X) 

o 

as given by Crawford [4]. 

In comparing the results of the simulation with those predicted 

by the theory, the greatest deviation is observed in the first mode. 

In shorter runs (1024 Ai) the error in the first mode was within   3% 

and considerable improvement is observed in the higher modes.   The 

better agreement between the results of thecr/ and simulation can be 

attributed to the smaller  AID/ID   ratio in the case of the higher modes. 

The simple method that we employed for estimating the resonant 

frequencies could not be applied to the first two modes of case 7. 

This spectrum is show a in Fig. 2-b.   There is a lack of continuity 

in the spectrum which is most likely due to exceedingly high internal 

fluctuations of the computer plasma.   We observed such "irregularities" 

of the spectra only in cases where the plasma frequency uu    is greater 

than the electron cyclotron frequency m   . c 

(29) 
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5.    Experience with Different Methods 

All computer experiments were carried out with S776 particles. 

The wave number k and the electron cyclotron frequency m    were 

kept constant.   Changes were introduced by varying the initial thermal 

velocity v.  and the plasma frequency u>     .   The latter was accomplished 1 P 
b < assigning the proper magnification ratio to the particles. 

Most of the experiments were performed by using the PIC method. 

We usei the NGP method, which is faster [12], most frequently in 

trial runs proceeding the main experiment.   The only significant difference 

thai we could observe between these two methods was that with the 

NGP methoa the plasma heated up much faster.   For this reason we 

could not rely on the NGP method except in the very low density and 

high temperature range. 

The idea of smoothing the electric field was also considered as a 

means of reducing the heating up of the computer pta.vna.   The smoothing 

was accomplished by suppressing the Fourier coefficients A the computed 

electric field associated with the higher spatial frequencies.   Let 

E (m,n)  and  E (m,n)  be the Fourier coefficients of the electric field x y 
components.   The spatial frequencies  m   and   n  assume integer values 

with ranges 

-31 * m * 32 
(30) 

-31«n< 32 

in the case of the 64x64 grid.   In terms of these quantities, the 

smoothing scheme which we used can be defined by the requirement 

that 

E (m.n) =E (m,n) = 0 (31) x y 

for 

|m| * 9        or        |n| * 9 (32) 
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The particle methods PIC and NGP, In which the electric field is 

modified to satisfy Eqs. (31) and (32) are denoted as PIC-S and NGP-S, 

respectively. 

The NGP-S and PIC-S methods showed considerable improvement 

in energy conservation if compared with NGP and PIC methods, respec- 

tively.   No loss of accuracy was noticed due to the smoothing.   On 

the contrary, in certain cases there was some improvement.   For example, 

case 3 was also simulated by using the PIC method.   The resonant fre- 

quencies estimated from the results of the NGP-S method were closer 

to the theoretical value than those obtained through the PIC method. 

Similar improvements were observed in case 5 when PIC-S was used in- 

stead of the PIC method.   In tills case, however, the PIC method could 

not be used because of lack of energy conservation.   When simulating 

case 5 with the PIC method, the energy of the system increased by 

23% over 1000 time steps.   The same problem with PIC-S showed no 

more than 0.5% increase of the total energy over the same period. 

Apart from the question of energy conservation, the improvements in 

the results may also be connected with the reduced collisional effects 

in the NGP-S and PIC-S methods.   This aspect of the problem was not 

investigated. 

The examination of the results obtained from 25 computer experi- 

ments reveals that we came closest to our objective in those cases in 

which the plasma density is low.   The best agreement between the 

results of simulation and theory was obtained in a case with x   = 0,5T 
P c 

As  us     increases the internal fluctuations become more pronounced 

and there are indications that we are not dealing with pure linear 

oscillations.   The spectrum of such oscillations shows lack of 

continuity and the maxima are less clearly defined.   This is seen 

in Fig. 2-b in comparison with Fig. 1 -b.   We expect that these fluctua- 

tions :an be reduced by using greater number of particles. 
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6.    Conclusions 

We have simulated CHW resonances whose propagation vector 

k is perpendicular to the externally applied constant magnetic field 

B  on a digital computer using two dimensional particle models. 

Our aim was to obtain the dispersion relations for such oscillations 

ir a homogeneous Maxwelllan plasma.  We found very good agreement 

between the results of the simulation and those predicted by the small 

signal theory.   The best correspondence between theory and simulation 

is in plasmas of lower density, i.e.,  to   < v   .   In a number of cases 
P       c 

with to   > m    the oscillations become less smooth and regular, P      c 
suggesting some nonlinear influence.   It is likely that this is caused 

by the excessive fluctuations of the particle model.   It is expected 

that the problem can be remedied by using more particles. 

We experimented with the NGP and PIC models.   In simulating 

CHW phenomena, the only difference between these methods that we 

could observe was that the NGP model hea'ed up much faster than the 

PIC model. 
The effect of smoothing on the computed electric field was most 

noticeable in the improved energy conserving properties of the models. 

The elimination of the high spatial frequencies of the electric field in 

the NGP-S and PIC-S had no adverse effect on the accuracy of the 

dispersion relations obtained from the results of the simulation to say 

the least.   This could be expected since the observed oscillations 

were always those of longest wavelengths. 

Acknowledgments 

It is a pleasure to acknowledge the contributions to this paper 

from many discussions v»ith 2. H. Armstrong and Jose* Canosa.   Ths 

author wishes to thank R. L. Morse for suggesting the problem and 

Jose Canosa for his careful reading of the manuscript.  The . uthoi 

benefited greatly from the suggestions of Professor O. Buieron, K. J. 

Harker, and R. W. Hockney. 

NOTE:     The   coaputer   programs  cencioned   .-re   for   IBM 
Internal  uae  only. 

682 



Dispersion delation for CHW 

References 

1. I.B. Bernstein, Phys. Rev. 109» i, 10 (1958). 

2. F.W. Crawford, G.S. Kino, H.H. Weiss, Phys. Rev. Letters 

13. 229 (1954). 

3. F.W. Crawford, G.S. Kino, H.H. Weiss, Microwave Lab. Report 

No. 1210, Stanford University, Stanford, California (1964). 

4. F.W. Crawford, J. Res. NBS 69D, 789 (1965). 

5. F.W. Crawford, Nucl. Fusion 5, 73 (1965). 

6. I. Dawson, Phys. Fluids 5, 4, 445 (1962). 

7. R.W. Hockney, Phys. Fluids 9, S, 1826 (1966). 

8. R.L. Morse, "Methods in Computational Physics" 9, 213-239 

(1970). 

9. C.K. Birdsall and D. Fuss, J. Comp. Phy3. 3, 4, 494 (1969). 

10. R.W. Hockney, SU-IPR Report No. 1.02, Stanford University, 

Stanford, California (1967). 

11. R.W. Hockney, Proceedings of Computational Physics Conference 

1969, UKAEACulham Laboratory, CLM-CP (1969), HMSO, London. 

683 

■*™IMHH »>■•»••_ 



Gazdag 

12. R.W. Hockney, Research Paper No. RC-2933, IBM Watson Research 

Center, Yorktown Heights (197C). 

13. C.K. Birds*!'., A.B. Langdon, H. Okuda, "Methods In Computational 

Physics" 9, 241 (1970). 

14. O. Buneman, J. Comp. Phys. 1, 4, 517 (1967). 

15. G. Bekefi, "Radiation Processes in Plasmas" (John Wiley and Sons, 

Inc.« New York, 1966), p. 237. 

684 

MiMMHIÜlii 



^ggff»™?^*^^^ , lf m II,!,,,!,^ 
■MnwnjmiWll^-ayijgjypEaE 

The Numerical Solution of Multi-Species 
Fokker-Planck Equations 

John Kitteen and Arthur A. Mirin 
Lawrence Radiation Laboratory 

University of California 
Livermore, California 

Abstract 

In studying the feasibility of fusion reactors based on 

magnetic mirror confinement of the plasma it is necessary to solve 

the Fokker-Planck equations in order to determine end losses and 

energy transfer. In any realistic system several ion species will 

be present including the charged reaction products. We have 

developed a new program, called NFP, for the purpose of solving 

the system cf time-dependent Fokker-Planck equations for the 

distribution functions of several species of particle. Azimuthal 

symmetry is assumed so the resulting distribution functions are of 

the form f(v, 8, t). We assume that the distribution functions 

can be separated into a product of two terms — the first term is 

a function of v and t and the second term is a function of 6 only. 

The 6 dependent part is given analytically and the equation for 

f(v, t) must be solved numerically. 

I.  Mathematical Formulation Which Describes the Collisional 

Behavior of a Plasma 

A.  Fokker-Planck Equation 

The usual transport equation for particles in a plasma is 
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5t- +  X 

3fa      P 
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3fa 3fa 
W "  (ir'c+ Sa' il) 

where f (x, x, t) is the distribution function for particles of 

species a in a six-dimensional phase space. (3fa/3t)  is a term 

describing collisional effects; S (r, y, t) describes a particle 

source, if applicable. £ is the force on a particle. 

The collision operator most often applied in plasma theory 

is the Fokker-Planck operator. It is given by Rosenbluth et al. 

^2       ,2. 1 3f 

lT($t-J 

3h 1 3' 
■) = - -, 3v (fa 3v ' + 2" 3v3y 

3 9a lfa "SIT (2) 

where 

m+m,  z. 0 

MY) = z -—-- 0 f 4x' fb(x')/lx 
b a a a - X' 

ga(v) = Z   (^)2 / dy.' fb(3t') 
b  a 

- v' 

4*zV 
3. 

m_ 

a D 

loge Da, 

T and N refer to electron temperature and density, and X„ is 

the electron Dsbye length: 

KT 
(- 

e ,1/2 
7) 

4irN e e 

In reference (1), spherical polar coordinates (v, 8, $) in 

velocity space are used, where 6 is the angle between the velocity 

vector and the magnetic field vector.  Azimuthal symmetry is 

assumed so the resulting distribution functions are of the form 

f (v, y, t), where \i  = cos 8. The equation for each species is 
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then given by 

_1 3f     1  3     - 3h   1 3        , 3h 
V 3t* » " 7 *F <fa v2 *T>- 7 TÜ {fa<^2) 3^ 

♦ J* J?   ^  v2 !4a, 
2v 3v 3v 

+ -T- -T- tfat4(l-.i
2) 

2v* 3u   a v^ 

2,2 3 *a  ,    a 3g 3g 
T? + v(1'lJ JW 1 )J{1-11 > -5T )> »V V 3p 

3g= 
♦ij-2-tf.Uii2) [^Ä-i^Ä]} 
v 3y3v 3p3v     3u 

(3) 

,3       ,    -  3 g 
+ -iy - (fat- i (lV) —j 

2v-  3v   a  v       3u^ 

3g   2u 3g 
a  2 —- + *- ]} 

3v    v  3y 

13   ,, r 1  n  2, 3 ?a x 
2" 3*a z? — {f

a
[^ »Jl1-11 > rr+ — w 2v^ 3p   " v*        3u* 

2    2  8 *a  2  39a 

B.  Separated Solutions 

Calculations performed in two-dimensional velocity space for 

the ion dij':ribution function indicate that approximate results 

can be obtained by separating the distribution function into a 

product of two terms (Bing and Roberts, 1961; BenDaniel and Allis, 

1962). Tho. first term is a function of v and t and the second 

term is a function of 6 only.  The equation for the function of 9 

is a Legendre differential equation on the domain -8 ± e 1 9C» 

where 6 defines the magnetic mirror loss cone. The equation for 

f (v, t) must be solved numerically, and it is given in Eq. (6) 

of this paper for each species. The boundary condition on the 

distribution function in such a loss cone problem is f(v, 6c, t)=1 

for all v and t for each species, which implies f -  0 at v * ö in 
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the separated solution. In those problems where we assume that 

the distribution functions are Isotropie we take a symmetry condi- 

tion at v = 0, i.e., 3f/3v = 0 for all t. 

In the equations for ions and electrons we include sour: terms 

and also include the loss of each species by scattering into the 

velocity-space loss cone of the magnetic mirror configuration, -id 

the hot ions can be lost by charge-exchange with the background gas. 

A plas.ia potential is computed at each time step of the calcu- 

lation by requiring charge neutrality. A critical velocity v (t) 

is detem'ir.^J ouch that electrons with v < v_ are not lost and c 

those v*.th v > v can be lost by scattering into the loss cone. At 

each time step the electron charge density is compared to the total 

ion charge density and the velocity v modified accordingly. The 
2 

plasma potential is obtained from e| = 1/2 mv . 

In Eq. (3) if ve let g and h&  .a isotopic, i.e. -5— = -5— = 0 

then we have 2 

L !i - - i   » <£ v2 !Sa> + A -4 (f v2 lift) :d    at    v2 3v <fa   Tv»  ^J J?  (fa   ^ 

+ -i, —i {(lV) —5* - 4u -j4 - 2 f}      (4) 
2v  3v        3v' 

v2 3v    3V    v 3v 

Let f (v, p, t) = U(v, t) Ma(u) then a 

Ma »U.    
Ma 8 {u v2 %, + _ü- i' (  v2 ^ 

T* "St = " 7 3v (Ua v Tv'  17 3vQ  a    3v2 
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" "T 3v { a Tv' 
v 

32M. 3M_ U    ig ,    3 B. oria, 

M  (u)   satisfies 
a 2 

(1_u2}   !_ü| -  2p ^ + A.M. = 0 
3U 

3M, 
 C 

3u  '   "a""a 

Hence 

a    3t 
a *»        2v 3v 3v v    3v 3v 

T - <Ua v*  3v      a 

3ga 

3v 2v 

3ga — ü iv    a 
(5) 

what follows U= will be denoted by f  .    Eq.   (5)  becomes In wnat IPüI»»  u_ WJ.XJ. »»= .^_..~-— __,   _   . 
a. » 

1    3fa x 32ga 

a    3t 
l2 

a*' 3v 

3f. 3h 
+ -a i- 

3v 

ag. 32ga    a3?. a      1    °ya  .   2  - +  

3v      v      3v      v    3v 3v 

2 
na       2  "  y_ + 

5+ ? 
339a       1   3\ 

+ f   I.lüi.li. + iUI.+ il^l 
"a   "    v    3v        3v'      V    3v 3v 

f     f
AaÜa 

"  '•   [1?    3V1 
(6) 

The functions h   (v,   . >   «id g(v,   t)   are defined by the equations 

a b      a D 

+    C fb(V,t)   v'dv']   , 

,.2 
dv' 

(7) 
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\2 1 v' rlVnl g(v,t)    = 4ir E   (=ü)"   [  /    f. (v',t)v  (1 + 4 H)  v'^dv' 
b    Za b     b 3    v2 

+ I" fb(V,t)   (1 + | -^)  v'3dVJ. (8) 
V "V' 

The summations are taken over all the species of particles being 

considered,  including type a. 

The number density of particles of type a is given by 

n   (t)   = 4n     /    f   (v,t)v*dv. (9) 

C.  Dimensionless Equations 

We wish to solve the system of equations 

!£-«<•> ^f+e
(a) ^+Y<a> fa + «<a> 

3t 3v2 3v a 
(10) 

for an arbitrary number of species (denoted by Roman letter sub- 

scripts) . 

The domain is given by 

t > 0       0 < v < v „ — —  — max 

and the initial and boundary conditions are 

fa(v,0) given;   ^a^max^   = 0 

3f. 
f (0,t) = 0 or = o 

v=0 

The coefficients of Eq.   (10)   are given by 

'a) ZK    ■} 1 V A 1        °° 
!■«  r.  Z   {g£r   [   ^    ;    f   (v,)v,4dv,+ 7 /„ fK(V)v'dv'] 

3v    o ab    Za TJv V 

,<*> -4.r.ij (^)2 i^i   ;vfb(V) v2dv 

-K    f    fK(v\)   v,4dv'   + |    I" f^v'Jv'c'v'J 
3v      o 
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,(a) 
b (za>     \ V 

Pjv) 
^Z  *ab   <^)2   I  /Vfb(V,t)V2dV 
v        b a o 

1        v „ 
~ 7T    {    f. (v'.t'v'4 dv'  + =^ /    f. (v'jtjv'dv']} 3v      o      b J „      D 

(the summations  are taken over all species.) 
4TTV„ 

L«»t x - v/v_, whero vft is  a constant,   and let F    =   (—^—)   f   , u u a i\ a a 
where 

nJO) = K / K  (x,0) x2 dx = K Ia(0) 
a       a _   a a & o 

(n (0) is given and the integral I, is computed from the initial 

distribution.) 

We <?efine the functionals 

M(F) = ; F(y,t) y dy 
x 

N(F) = f*  F(y,t) y2 dy 

E(F) = ;X F(y,t) y4 dy 

In terms of the new variables Eq. (10) becomes 

3F_ 3F      3 F 

3t  Aa 
_| + B' —^ + C' F  + Dl 
3X2    a  3x   a  a   S 

(11) 

where 

A; = -f i {h2 [z3E(v +IM(V] Kt v0
J b "a   3x 

B' a 
3 I   (^)2 Klzr h  N(FK) - A E(FK) + 4 M(Fh)] 3 i   VZ v0 x b  a »b X 3x" 

v_ b  a    D       x 3x 

D' = S (x,t) is the source term for species a. 
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4 
Let r~* *  *J!!£T =*  .806 x  1018 

mo 
where m. is the electron mass. 

We introduce the independent variable 

- - FoeKe fc , t_ 

2v0 
3 ""*■ 

We have 
4lre za 

r    •%— In  D 
a    ma       

a   mo 2   4 
f-2 =  a a  = (-2)'  Z*  An D 
Joe      4ne4       ma   a     a 

m0 

Eq. (2) becomes 

3F      32F      3F_ 
—^ = A=  ä + B. —± + C F  + D (12) 
3x   a 3x    a 3x    a a   a 

where      3 

vo 2 
Aa = rZI «I Aa = ^ Aä oe e 

v2 
Ba = ^ ^ Ba = *» B; 

C 
v 3 v0  2 

a  r frc; ■ sc; oe "e 

II.  Calculation of the Ambipolar Potential 

The coefficient of the scattering loss term is 

Vv) Xab - 1  Aa 

where A is the separation constant (eigenvalue of the Legendre 

equation corresponding to first normal mode).  For A we shall use 
a 

the approximate value 

-1 Aa =   (1°9.10  V 
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where R    is the effective mirror ratio for particles of type a 

and depends on the aiabipolar potential *. 

For electrons we have 

Re = R(l *   r 
k*J' 

•1 

where R = B        /B     ,     * max    o  ' 
1 = I m e 

2 
vcr 

For ions we have 

k    ■ R(l 
Tmav 

-1 

The procedure for determining * follows.    Let 

j"(x)   = ne(i) 

Q+(T)   =Mb i^d) (b j e) 
b 

(The sum taken over the ion species.) 

At every time step Q~ and Q are computed and the difference 

Q*-Q- 

Q 

compared to a specified small number.  If the difference exceeds 

this number, then /  is increased by an amount Av  and the time 

step is repeated. This process is repeated until the condition is 

satisfied. The term P (x) is then 
6    x  2 

[log10{R(l - -^l—)
-1}]-1     x > xcr 

Pe(x) 

X < X — cr 

where vQ x  = v .  (Note:  let X . = 1/2.) 

jm~ 
In the ion equations for those values of x such that x < J— —=— x 

-Vma /W=I    cr 

set the corresponding values of the distribution function F (X,T) 
ct 
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equal to zero.  For 

Vma /IF 

Pa(x) = [log10{R(l + x * 2 2)"1}1"1 

+ 

i.    r. U 

(Again set X^ = 1/2.) 

An option for determining the ambipolc : potential is also 

available in the code, and is described as follows. 

The new electron density Q~ is compared to the ion density Q 

and the change in electrons is compared to the change in ions. 

Since charge neutrality is to be mainteined, if the electron 

density is less than the ion density, and the electron change is 

less than the ion change, the ambipolar potential is increased by 

a small amount, and the time step is repeated. This cycling is 

continued until either the condition 

Q" > Q+ 

or the condition 

AQ~ > AQ+ 

is obtained. 

On the other hand, if the ion density is less than the electron 

density, and the ion change is less ..tan the change in electrons, 

the potential is decreased and the time step is repeated, this 

cycling continuing until either 

Q" < Q+ 

or 

AQ~ < Aot 

The requirem .t on the change in densities keeps the electron 

density from getting too far ahead of the ion density, and vice 
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versa. This could happen due to discrepancies in rates that might 

otherwise build up. 

III. Difference Methods 

The system of equations (12) is solved by an implicit dif- 

ference scheme which is similar to that described ir earlier works. 

In this application the system (12) is treated as a single vector 

equation for the p-dimensional vector F where the elements of F 

are the distribution functions for each species. A variable mesh 

is used in velocity space with a fine spacing for small v to 

accurately represent the ion distribution functions. 

2,3 

IV. Applications 

The program has been applied to three-species problems (e, D, T) 

and (e, D, He ), to four-species problems (e, D, T, a), and to five- 

species problems (e, D, He , u, p). We also plan to apply it to a 

full six-species problem (e, D, f,  He , a,  p).  Source terms 

2 3 suitable for neutral injection '  are included and also source and 

loss terms of the form <ov> n n. corresponding to thermonuclear 

reactions are included. 
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L. E. Kline* and J. G. Siambis 
Department of Electrical Engineering 

Carnegie-Melhn University 
Pittsburgh. Pennsylvania 

ABSTRACT 

We present a new nethod for the simulation of electrical 

breakdown phenomena, and plasma phenomena where both binary electron- 

neutral collisions and collective interactions are important. Binary 

collisions are included using a Monte Carlo technique. Collective 

interaction is included using a one diiH...sional plasma model. The 

method is used to simulate the growth of electron avalanches and 

electron streamers. Photolonlzation is also Included in the simulations 

and is an important mechanism in streamer growth. Good agreement is 

obtained between calculated and experimental results for both 

avalanches and streamers. 

I.  INTRODUCTION 

When an intense electric field Is applied to a gas, the gas 

breaks down, chai   ,  from an insulator to a conductor. During the 

breakdown process the electron and positive ion densities in the gas 

increase over many on. rs of magnitude in as short a time as twenty 

nanoseconds for centimete- gaps. 

* Present address, Westinghouse Research Labs, Pittsburgh, Pa. 15235 
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We have carried out computer simulation studies of electron 

1 2 pulse experiments ' . The simulation includes elementary collision 

process in the gas as well as collective Interactions among the 

electrons and Ions that are released in the breakdown process. In 

the simulation experiments a pulse of low energy electrons is rel 3ed 

at the cathode, In a parallel plane gap with an applied electric field. 

(The word electron is used below to denote simulation particles that 

can represent one or many actual electrons). The simulation simultaneously 

follows the trajectories of a large number of individual electrons as 

they drift from the cathode to the anode. Electron velocity components 

parallel and normal to the electric field and electron position measured 

from the cathode, parallel to the electric field, are computed for 

each electron as a function of time, the independent variable in the 

simulation. Time is advanced in equal steps, At. At each time, 

t. , (t, • kit) the probability of a collision with a neutral gas molecule, 

between t. and t, ., is computed for each electron and compared with 

a random number to decide whether that electron suffers a collision 

between t. and t. .. When an electron suffers a collision the relative 

probabilities for elastic, vibrational, exciting and ionizing collisions 

are used along with another random number to decide what kind of 

collision the electron has suffered. The collision probabilities arc 

3 
based on published cross-sections . Cross-section magnitudes are 

assumed to be proportional to the pressure, while their form is 

independent of pressure. Uniformly distributed scattering angle cosines 

are assumed in all collisions. Similar Monte Carlo calculations for 

electron avalanches in gases, assuming negligible space charge 

distortion, are described In Ref. 4. 
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In simulated and actual election pulse experiments N, the 

number of electrons in the pulse, increases exponentially with time as 

a result of ionizing collisions. 

N(t) - N(t - 0) exp(avdt) (1) 

Where a is called the ionization coefficient and v. is the electron 

drift velocity, given by Eq. (2), where x is the average electron position. 

vd - x/t (2) 

1,2 
The growing pulse of electrons is called an electron avalanche 

8  3 
When the electron density in the avalanche exceeds 10 /cm collective 

electron interaction and distortion of the applied electric field 

begins. 

We account for collective interactions by regarding the 

electrons as charge sheets . The electric field at all points within 

the gap is obtained by solving Poisson's equation in one dimension at each 

time t, , based on the positions of all of the charge sheets. The 

charge sheets are then allowed to move under the influence of the 

electric field until t,   when a new electric field is computed based 

on the new electron positions. The size of .he time step, At, is 

based on the electron plasma frequency and the average frequency of 

collisions between electrons and neutral gas molecules. 

The total number of electrons represented by the simulation 

particles typically varies over eight orders of magnitude during the 

course of the simulation. At the beginning of the simulation each 

simulation particle typically represents ten actual electrons. At the 

end of the simulation each particle represents 10 actual electrons, 

hence the simulation particles must be rescaled several times during 

the course of the simulation. 
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The exponential growth of electron avalanches, described by 

Fq. (1), is due to ionizing collisions between electrons and neutral 

gas molecules. Experiments ' also shot; that gas photoionization is 

an important mechanism for the release of electrons and positive ions 

in gases. Photoionization is included in the simulation using recent 

experimental data . 

When electric fields well above the minimum electric field 

required for breakdown are applied tc parallel plane gaps, light 

emitting regions called streamers develop in the gaps during the 

electrical breakdown process. 

Streamers are studied experimentally by recording the 

spatial and temporal development of the light that they emit. We 

estimate the light output of the simulated streamer by recording the 

spatial and temporal development of the density of excited molecules 

which appear when a simulation electron undergoes an exciting collision. 

The spatial density of excited molecules is printed out and reset to 

zero at successive times tx. (tx. - kAtx) where Atx is comparable to 

the muan lifetime of the excited molecules. 

Computer simulation results are used below to calculate 

electron avalanche and streamer velocities as well as the ionization 

coefficient for electron avalanches. The calculated values of these 

quantifies are in good agreement with experimentally measured values 

in all cases. 

11. THE SIMULATION MODEL 

Electron-Neutral Collision Calculations 

The probability of a collision between an electron and a 

neutral gas molecule between t. and t, . is given by Eq. (3). 
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Pd^) - 1 - exp (- v(v(tk))At) (3) 

In Eq. (3) v is the total collision frequency for electron-neutral 

gas molecule collisions. The total collision frequency is a function 

of electron velocity and is the s-ss sf the individual collision 

frequencies for elastic, exciting and ionizing collisions. 

v     • v      + v      + v (4) 
total   elastic   exciting   ionizing 

P(t. ) is calculated for each electron at the beginning of each tine 

step. The calculated collision probability for each electron is 

compared with a pseudo-random number, drawn from a uniform distribution, 

to decide whether that electron suffers a collision in that time step. 

When an electron suffers a collision the collision type is 

determined based on Eq. (4) and on the fact that the probability of 

a particular kind of collision, given that a collision has occurred, is 

equal to the collision frequency for that kind of collision divided by 

the total collision frequency. For example, the probability of an ionizing 

collision, given that a collision has occurred is: 

P " vionizing/vtot.l (5) 

The collision frequencies in Eq. (5) must be calculated at each time 

step, for a particular electron, based on that electron's energy. 

Exciting and ionizing collisions both have threshold velocities. 

Electrons with velocities lower than the respective threshold velocities 

cannot undergo exciting and ionizing collisions, thus simplifying the 

collision type decision for electrons with low velocities. 

When the collision type has been determ. ned, for an electron 

that has suffered a collision, the total electron velocity following 

the collision is computed as shown in Table 1. 
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The equation for the electron velocity following an exciting 

collision is based on the average velocity loss in an exciting 

collision, vv, which is known as a function of incident electron energy. 

The incident electron also loses a known amount cf energy 

in an ionizing collision. The remaining energy in ionizing collisions 

is shared between the incident and secondary (newly relea.ed) electrons. 

Since almost no experimental data is available concerning the sharing 

of energy between incident and secondary electrons in ionizing collisions, 

equal sharing has been assumed. A secondary electron is added for 

ionising collisions, with the secondary electron velocity equal to the 

new incident electron velocity. 

A new direction is chosen for the incident electron (and th>. 

secondary electron in ionizing collisions) by randomly choosing a 

direction cosine, cosS, from a uniform distribution on the interval 

(-1, 1). Then the new velocity components are computed using (6) and (7) 

Table 1 Electron Ve.ocities Before and After Collisions 

Collision Type v « velocity after collision 

v' » velocity before collision 

elastic 2   ,2 
V  ■ V 

exciting 
2   ,2    2 

V  "V   - V 
X 

ionizing v2 - l/2(v'2 - vt
2) 
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along with the new total velocity already computed. 

Vl|    (tk> " v(tk> C0S 6 

V     (tk)   -  V(tk)    (1-C08   6) 

(6; 

(7) 

The new parallel velocity, v , and the square of the new normal 

2 
velocity, v , are then stored, completing the short-range collision 

calculations for the particular electron under consideration. 

The secondary electron (simulation particle) which is 

released in a particular ionizing collision always represents the 

same number of actual electrons cs the incident electron (simulation 

particle) involved in that ionizing collision. 

When an ionizing collision occurs in a cell the number of 

fixed positive ions in that cell is increased by an amount equal to the 

number of actual electrons represented by the simulation particle 

involved in the ionizing collision . The resulting fixed positive 

charge density corresponds to an assumption of immobile positive ions. 

Electric Field and Electron Motion 

During the simulation the potential difference between the 

electrodes in the discharge gap is assumed constant. Poisson's 

equation is solved in one dimension using standard sheet model 

5 8 techniques ' to find the electric field in each cell. The total 

charge In each cell is the sum of the charges of the simulation particles 

in that cell and the fixed positive charge, due to ionizing collisions 

In that cell. The equations of motion for the electrons are: 

x(tk+1) - x(tk) ♦ v (tk) At + (*) Ek(Ät)
J 

V(W ■ V(V + $ \ At 

(8) 

(9) 
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Applied field 

Fig, 1   Position and Velocity Components for a Typical 

Electron Sheet. 

In Eqs. (8) and (9) t...  - t. + At, and x is the position of an 

electron measured from the cathode as shown in Fig. 1. Although the 

positions of electron sheets are followed in only one dimension, as 

shown in Fig. 1, each electron sheet has two velocity components 

which are also shown in the figure. Only v.. , the parallel component 

of velocity, is affected by the electric field, as shown in Eq. (8). 

Both velocity components are altered in short-range collisions as 

discussed above. After new positions and velocities at t. . have 

been found for all electrons t-ime is advanced and the short-range 

collision calculations are begun for the next time step. 

Scaling 

When N(t), the total number of simulation particles exceeds 

the maximum allowable number of particles, which is specified in the 

progran inputdata, then the original group of simulation particles is 

replaced by an approximately equivalent grouj' containing few  simulation 

particles. Each new particle represents several times as many actual 

electrons ar the old particles. The old and new groups of particles 
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should be equivalent, in the sense that their distribution In phase 

space are approximately equivalent. 

In the simulation program a new group of "larger" particles Is 

generated to represent the old, larger group of "smaller" particles by 

randomly selecting some fraction, f, of the old group of particles. Each 

of the selected particles then represents 1/f times as much charge and 

mass as each of the old particles. This technique has the advantage of 

simplicity and the disadvantage that there is no guarantee that the dis- 

tribution of the selected particles in phase space is approximately equal 

to the original particle distribution. This disadvantage can be minimized 

by careful choice of the maximum allowable number of particles and the 

fraction, f which is retained each time that scaling is necessary. 

Gas Photoionization 

Photolonization of a gas due to radiation emitted by an electrical 

discharge has been measured experimentally in Nitrogen and in other gases 

The experimental results of Ref. 6 form tie basis for the photoionization 

calculations which are described below. In the experiments a point-plane 

corona discharge is used as a radiation source. Radiation emitted by 

the discharge causes gas photoionization which is measured by the current 

to a photoelectron collector. The experimental results show that the photo- 

ionization rate in the collection region is proportional tc the rate of 

ionizing electron-neutral gas molecule collisions in the discharge. 

Since the short range collision calculations described above 

provide an estimate of the collisional Ionisation rate at all points in 

the gap, in the computer simulation, the experimental data described 

above can be used to estimate the rate of photoion pair production in 

the gap. 
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The photoionlsatlon calculations are carried out at successive 

tines tp^, whsre tp. - kAtp. The gap Is divided Into cells to carry 

out the photoionlsatlon calculations. &  , the number of photoion 

pairs (photoelectrons and photoions) produced in the 1th cell between 

tp. and tp. .. Is calculated using Eq. (10). 

n cells 

\" U    *«pd •« \ (10} 

In Eq. (10) N_ Is the collision^ Ionisation rate in the jth cell, 
J 

♦•. is an experimentally measured coefficient which depends on 

pressure and on the distance between the ith and jth cells, p is the 

pressure, d Is the cell width and 6  Is the solid angle subtended 

at cell j by cell i. The radius, R „_, of the region where photoion 

release Is calculated, is fixed in the simulations. A fixed radius 

allows 6. in Eq. (10) to be calculated and is equivalent to Ignoring 

photoion pairs that are produced outside a cylindrical region with 

"diu8 RGAP. 

III. ELECTRON AVALANCHE RESULTS 

When the electric field, E, pressure, p, and gap length, d, 

are appropriately adjusted in the simulation experiments, so that 

ad£4, no scaling is required, and collective interaction does not 

occur in the simulations. Hence the results of simulation experiments 

carried out with adsA can be compared with the results of corresponding 

actual experiments to provide a check on the electron-neutral 

collision calculations. Figures 2 and 3 compare calculated and 

experimental valres of v., the electron avalanche drift velocity 

(see Eq. (2)) and o/p where a is the Ionisation coefficient (see Eq. (1)) 

and p is the pressure in Torr. The pressure detenu <es the magnitudes 

705 



Kline and Siambis 

of the collision frequencies used in the simulation. When space 

charge distortion does not occur both actual experiments and simulation 

experiments show that o/p and v, depend on E/p, the ratic of the 

applied electric field to the pressure, hence both a and v. are 

plotted vs. E/p. The good agreement shown in Figs. 2 and 3 indicates 

that the short-range collision calculations accurately predict the growth 

of the electron pulses into electron avalanches. When both E and p 

are increased, with E/p fixed, a  is increased and the maximum number 

of electrons in the avalanche increases compared to the number of 

electrons in an avalanche at lower E and p but the same value of E/p. 

When E and p are increased at fixed E/p so that ad*4» scaling must 

be used in the simulation experiments. The calculated values of a/p 

and v. are approximately equal for cases with ad>4 and cases with 

ad<4 as long as space charge distortion of the applied electric field 

does not occur, thus validating the scaling procedure that is used. 

IV. ELECTRON STRFAMER RESULTS 

When adil4 space charge distortion of the applied field 

occurs in both simulated and actual electron pulse experiments , and 

the electrons interact collectively. Figure 4 shows N (t) for a case 

where ad-36. In this case the electron density is large enough to 

distort the applied electric field at t • 12 ns, when the electron 

avalanche is midway between the electrodes. Once space charge distortion 

begins most of the electrons in the avalanche are in a region of 

reduced electric field, causing the reduced growth rate shown in Fig. 4. 

-4    -6 
The coefficient *11P«911 in Eq. (10) is on the order of 10  to 10 

for the pressures used in the simulation. Large values of ad give the 

high collisional ionlzation rates needed for the release of a large 
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a 
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» - SchlumMtm 

liL J 1    1   I I I 111 tir 
up, volt era"1 Torr"1 

Fig. 2   Calculated and Experimental Values of v., the Electron 

Avalanche Drift Velocity. Calculated Results are Shown 

as Points. The Curves Show the Experimental Results of 
9 10 

Wagner , and Schulmbohm . 

C/ILKOMCU"1 Torr"1 

Fig. 3   Calculated and Experimental Values of ot/p. 

Results are Shown as Points. 

Calculated 

The Curves Show the Experi- 
11     12 

mental Results of Hasch, Ayres, and Posin , Bowls  and 

Heylen13. 
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10 

10 
t. ns 

20 

Fig. 4   Calculated Total Number of Electrons in a Simulated Electron 

Pulse Experiment where ad»36. 

number of photoion pairs as indicated by the values of i|i..pd8.. and 

Eq. (10). 

The electrons released by photoionization start avalanches, 

called secondary avalanches, which grow and increase the charge density 

in the gap both ahead of and behind the primary avalanche.  (The 

primary avalanche is the avalanche which grows from the original 

electron pulse). The growth of the primary and secondary avalanches 

is accompanied by light emission from the region occupied by the 

avalanches. 

The exciting collision number density in each cell is increased 

each time an exciting collision occurs in that cell. The exciting collision 

number density Is printed out at times tx. (tx. » k&tx), and then reset 
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to zero. As a result '.he exciting collision number density that is 

printed out at each tine tx. gives the number density of exciting collisions 

which have occurred between tx. and tx_,. Since the light emitted by 

an avalanche or a streamer Is due to the photons emitted by excited 

molecules, when they return to a lower state, the spatial density of 

exciting collisions should be a good estimate of the spatial density 

of the light emitted by the simulated avalanche or streamer. 

The boundaries of the light emitting region of the simulated 

avalanche or streamer are assumed, at each time, to be the points 

where the exciting collision density falls to two orders of magnitude 

below its peak value. The boundaries of the light emitting region for 

the run shown in Fig. 4 where ad - 36, E/p - 1000, p - 1 and N(t-O) - 500 

are plotted in Fig. 5. The figure shows that both boundaries of the 

light emitting region propagate toward the anode for t<12 ns. At t«12 

the propagation velocity of the anode-side boundary, abruptly increases, 

and the cathode-side boundary reverses direction, and moves toward the 

cathode. 

Light fronts propagating toward the anode at velocities much 

greater than the electron avalanche drift velocity and light fronts 

propagating toward the cathode are also observed in experiments and 

are called anode-directed and cathode-directed streamers respectively. 

The anode-directed streamer velocity In this case is the increased 

velocity of the anode-directed light front for t>12 ns. The cathode- 

directed streamer velocity is the velocity of the cathode-directed 

light front. The anode-directed streamer velocity is positive toward 

the anode, while the cathode-directed streamer velocity Is positive 

toward the cathode. The streamer velocities are equal to the slopes of 

the boundaries of the light emitting region in the distance-time plot 

of Flg. S. The electron avalanche drift velocity is also shown in 
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Fig. 6   Calculated and Experimental Electron Avalanche and Electron 
Streamer Velocities. The Experimental Values are from Ref. 7. 
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Fig. 5. The electron avalanche drift velocity Is calculated using Eq. (2) 

for t<12 ns, the time period preceeding the increase in anode-directed 

streamer velocity and the development of a cathode-directed streamer. 

Calculated anode-directed streamer velocities ar.2 shown in 

Fig. 6 along with experimentally measured streamer velocities . 

Calculated values of tha electron avalanche drift velocity are shown 

for pol Torr. The measured values of the electron avalanche drift 

velocity are from Ref. 10. The calculated anode-directed streamer 

velocity for p - 36.5 Torr and E/p - 81.5 volt/cm Torr is about 10 

percent lower than the measured velocity. For p • 36.5 Torr and E/p » 90 

volt/cm Torr the calculated value is about 20 percent lower than the 

experimental value. The calculated and experimental streamer velocities 

depend exponentially on E/p at all pressures. 

V.  CONCLUSIONS 

The computer simulations described are the first plasma 

simulations which include both realistic binary electron-neutral gas 

molecule collision effects and collective interactions among charged 

particles  Binary electron-neutral gas molecule collisions are 

the essential mechanism in electron avalanche growth. The good 

agreement between calculated and measured electron avalanche drift 

velocities and lonizatlon coefficients demonstrates the validity of 

the binary collision simulation techniques. Simulation of electron 

avalanches provides detailed information ak?ut electron energies that 

would be impossible to obtain experimentally. 

The strr "»mer simulation results show that collective inter- 

action and photoionizacion are both important mechanisms in streamer 

development. Strsamera do not develop when photoionization is omitted 
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fron the calculations. Collective interactions (or space charge 

effects) Increase the electric field both ahead of and behind the 

primary avalanche in the simulations, thus accelerating the development 

of the secondary avalanches which a*-e started by photoelectrons released 

by gas photoionization. Streamer velocities calculated from the 

simulation results are in good to excellent: agreement with experimentally 

measured streamer velocities. Computer simulation which accounts for 

binary collisions between electrons and neutrals, collective inter- 

action and photoionization is the only available theoretical approach 

which can be used to predict the gro*:ch of electron streamers. 
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J. W. Poukey and J. R. Freeman 
Sandia Laboratories 

Albuquerque, New Mexico 

ABSTRACT 

A two-dimensional cloud-in-cell simulation technique, 

using recently developed fast methods of solving Poisson's 

equation, has been employed in practical studies of a 

laboratory neutron tube.  In such a tube, tritons are 

pulled from the surface of a plasma and accelerated to a 

target held at large negative potential.  Results of the 

simulation are in reasonable agreement with experimental 

observations of tube current vs. voltage and triton beam 

size.  The simulation code has been used to investigate 

such details as the spatial distribution of the triton 

current on the target.  The code is expected to be a 

valuable tool in the future development of such devices. 

I.   INTRODUCTION 

Recent advances in computer simulation techniques, 

together with presently available computer memory capaci- 

ties, make it possible to model certain complex laboratory 

devices with a substantial degree of realism.  In this 

*This work was supported by the U.S. Atomic Energy Commission 
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paper, we discuss a quantitatively successful simulation 

of a laboratory neutron tube in which experimental results 

were reproduced by the simulation to within the experimental 

error.  The neutron tube studied is similar in design to 

that described by Gow and Pollock  and by Murguliya and 

2 
Plyutto.   The simulation code has become a useful engineer- 

ing tool in improving the efficiency of various laboratory 

vacuum tube devices. 

The simulation consists of computing the motion of 

charged particles in their self-consistent and applied elec- 

tric fields.  A cloud-in-cell technique, developed for one 

3 
and two-dimensional problems by Birdsall and Fuss,  was 

employed.  This method is quite analogous to the particle- 

in-cell approach with area weighting, developed by Morse and 

Nlelson.   Ion gun calculations somewhat similar to the 

present study were reported by Hockney.   Calculations were 

made in both Cartesian coordinates, using the Buneman 

double cyclic reduction Poisson solver, and in cylindrical 

coordinates, using a Poisson solver based on the fast 

Fourier transform method of Hockney.   Both solvers incor- 

5 
porated the inverse capacity matrix method  for including 

internal electrodes. 

In Seccion II the neutron tube behavior is described, 

and the epproximations of our model are discussed.  The 

simulation code is described in Seccion III, and the code's 

predictions are compared with experiment in Section IV. 

Section V discusses some of the studies to which the code has 

been and will be applied. 
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II.  THE DEVICE AND THE MODEL 

Figure 1 shows a schematic cross-sectional view of the 

neutron tube, with dimensions normalized to FF' » 1.0.  An 

arc. located somewhere in region 1, is switched on and a 

plasma is produced.  This plasma is assumed to consist 

entirely of free electrons and triton ions.  Some of the ions 

are drawn from the plasma and accelerated onto the deuterided 

target DD' by the application of a large negative target 

voltage, typically - 70 kV with respect to the shield ABFF'B'A' 

around region 1.  The ions striking the deuterided target pro- 

duce neutrons by the D-T reaction.  For efficiency, one would 

like the largest possible triton current striking the smallest 

possible target area.  Thus, the crucial quantities are the 

magnitude and distribution of the triton current to the target. 

TMGET 

REGION 2 

Ll """ 0        „     F 

Figure 1:    The  laboratory neutron tube. 
Dimensions:     FF' -  1.0, 
AA' -  .6,  BF "  .4,  DC -  .7 
DD' - 2.0 
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The neutron tube is cylindrically symmetric (about a 

line through the centers of segments FF' and DD' in Figure 1) 

except possibly in the location of the arc sour:e.  Many arc 

source locations have been studied, a common configuration 

being a point source positioned between A' and B' at one 

particular azimuthal location, thereby producing a three- 

diaeisional non-symmetric plasma distribution.  S^scsf three- 

dimensional calculations are not presently practical, two 

separate two-dimensional approaches were pursued.  First, a 

Cartesian simulation, in which a non-symmetric arc source 

could be used, was performed.  Second, the calculations were 

repeated In cylindrical coordinates, using a cylindrically 

symmetric arc source.  It was found that the rectangular 

simulation produced results in better agreement with 

experiment. 

Experiment shows that the target current rises quickly, 

and then remains nearly constant until the plasma producing 

arc is shut off.  Thus, it is sufficient if we model the 

device in Its quasi-steady state, which is done In the 

following way.  We start with a uniform plasma, density n 

and zero temperature, filling region 1.  This plasma is 

represented in the simulation by N electrons and an equal 

number of ions.  Whenever an electron or ion hits any 

boundary, it is absorbed, and a new particle of the same 

kind is simultaneously injectf- at the postion of the arc 

source, so that N remains constant.  It is found that the 

system rapidly tends toward a steady state, and we take this 

state to be the same as the quasi-steady state assumed by 

the device. 
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Magnetic forces and relativistic effects are negligible 

in this problem so that the simulation particles obey the 

simple equations of motion for charged particles in an elec- 

tric field.  This field is partly due to space charge and 

partly due to the applied target potential.  The vacuum 

equipotentials for the rectangular calculation are shown in 

Figure 2.  The equipotentials in cylindrical coordinates are 

very similar in appearance. 

Finally, we must discuss some of the basic limitations 

of our model.  We have not included neutral particles, or any 

type of collision except with the Lcu^aries.  We neglect all 

ionization, recombination, and secondary emission processes. 

In representing a plasma by a relatively small number of 

particles, statistical fluctuations in density are enhanced. 

Spatial variations in the plasma are calculated on the scale 

of the cell size, which is much larger than the Debye length 

in the actual device.  Hence, effects depending on the plasma 

temperature (e.g., wall Debye sheaths) are not calculated 

(and do not affect our results unless the temperature is 

extremely high).  The only properties of the arc source 

which we include are its location and the quasi-steady 

state density of the plasma it produces.  In short, we do 

not simulate microscopic details, only certain macroscopic 

effects.  The justification of the model must come from 

comparisons with experimental observations. 

III.  THE CODE 

In rectangular simulation, a 64 x 64 grid was super- 

imposed over «'he entire cross-section in Figure 1.  The 
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Figure 2: The vacuum equipotentials 
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cylindrical calculations were performed on a 32 x 62 grid, 

using one-half of the cross-section. 

We start with a uniform plasma filling region 1.  This 

plasma is represented by N equally weighted simulation ions, 

and N equally weighted simulation electrons.  For cylin- 

drical calculations, the number of real ions or electrons 

represented by a simulation particle is easily computed, 

since the simulation particles are rings.  In the rectangular 

case, however, the simulation particles are infinitely long 

rods, which creates complications in the calculation of the 

current.  For this reason, we define the rods as having an 

effective length L ■ N/n A, where A is the area of region 1. 

If each simulation particle is allowed to represent irb/4L 

real particles, where b is the width of the opening AA', 

then the current density will be the same when calculated in 

the simulation for a rectangular opening of area bL as 

2 
for the real cylindrical opening of area ir(b/2) . 

A necessary condition for practicality of the code 

is that the required number of simulation particles be 

not too large.  By varying this number, we find that 

adequate numbers are 10,000 (rectangular) and 5,000 

(cylindrical) of each type of particle. 

Since the time step in the simulation is determined 

by the electron plasma frequency, while the ion motion is 

of primary interest, it is desirable to use the largest 

possible electron/ion mass ratio.  Comparison of the 

calculated iou current for various mass ratios indicated 

that a value of 1/16 was sufficient.  A one-dimensional 

simulation for this problem was also constructed to permit 
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a more economical and complete investigation of the mass 

ratio dependence.  Mass ratios ranging from 1/4 to 1/1024 

were investigated, and again a value of 1/16 was found to 

be sufficient. 

Having fixed the mass ratio at 1/16, one would still 

like to use the largest possible time step.  The optimum 

value depends on the plasma density (and somewhat on the 

tube voltage), but it was found that a time step of about 

SZ of an electron plasma period is sufficiently small. 

IV.  COMPARISON WITH EXPERIMENT 

The two basic parameters in the simulation code are 

the ti get potential V and the initial density n . 

Available experimental data provided the beam diameter 

at 70 kV, and ion currents for various voltages in the 

range 60 - 120 kV.  n was adjusted until the computed 

ion current compared with the experimental current for 

one particular voltage, 70 kV.  The value of n was then 

fixed for the remaining runs, and a current-voltage 

relationship was obtained. 

Three runs were made with each version of the code to 

check the current-voltage relationship, using target voltages 

of 70, 90, and 120 kV.  A least squares fit provided the 

following relationships: 

53 
I a  V*    (rectangular) ; 

I o V82  (cylindrical) . 

The rectangular simulation is thus in excellent agreement with 

the experimental relationship, 
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I a V*    (experimental). 

Using the n  defined above, the rectangular calculations 

for 70 kV produced a beam diameter of .81, again in excellent 

agreement with the experimentally measured diameter of .80. 

The cylindrical simulation gave a beam diameter of .60. 

The reason for the superiority of the rectangular code 

in predicting the experimental results is that the asymmetric 

nature of the plasma source is taken into account in the 

rectangular simulation, but completely ignored in the cylin- 

drical version.  The geometry itself is not as important In 

determining the behavior of tha neutron tube because, as seen 

in Figure 2, the field which draws ions from the plasma and 

accelerates them is mainly in the direction perpendicular to 

the target, and this component of the field is nearly the same 

in either geometry.  The main value of the cylindrical code is 

in the study of other neutron tubes which do have symmetric 

plasma sources. 

V.   FURTHER STUDIES AND CONCLUSIONS 

The rectangular simulation of the neutron tube operating 

in its quasi-steady state is shown for two values of n 
' o 

in Figures 3 and 4.  Although the higher density fease, Figure 3, 

has more space-charge spread, the total current is larger as 

shown in Table I.  From the practical standpoint, the current/ 

area is the most significant quantity, and this is slightly 

higher for the high density case.  The way In which the current 

is actually distributee on the target is shown in Figure 5 

where the current density (j) is plotted vs. distance along 

the target (x). 
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Figure 3:    The device in a steady state for 
V = 70 kV, nQ = 3.2 x 1011 cm"3. 
There are 9600 simulation tritons 
(shown as +*s)  and 9600 simulation 
electrons  (shown as dots).    The 
plasma arc source is located along 
A'B'  (see Fig.   1). 

•. ••"•»•• •      •?     ••«»KI.* 

....:>? 

Figure 4: The device in a steady state for the 

same conditions as in Fig. 3 except 

now n 1011 cm"3. 
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-i 1  i 1  i  i  i 

Figure 5: Current distribution on target for 

V - 70 kV, n - 1011 cm"3, and arc 
* o * 

source located along A'B'. j is in 

arbitrary units, x is in units of 

the cell size. The letters B, A, A', 

B' show how the current is located with 

respect to the opening AA' (see Fig. 1). 

TABLE  I 

Coaparlaon of Case« with Different Densities  

Beam   Normalized 
n 7.       Diameter  Current/Area 

mil   "3 10  cm 

11   -3 
3.2 x 10 * cm 

,40 amps 

,77 amps 

.92 

1.17 

.36 

.42 

The codes have be-n used for a number i,Z  other 

studies, such as the variation of beam diameter with V, 

the ratio of tritons hitting the target to those being 

lost on other boundaries, the effect of secondary electrons 

knocked from the target by the Impinging lone, and the 

effect of different arc source configurations.  Studies 

724 



Simulation of Neutron Tube 

which are expected to be carried out. in the near future 

are the inclusion of other types of ions, different tube 

sices and boundary configurations, and the inclusion of 

additional internal electrodes to help focus the ion beam. 

In conclusion, a cloud-ln-cell simulation program has 

been written to study a particular neutron tube.  The model 

on which the program is based Is somewhat crude insofar as 

simulating the plasma region is concerned, and a complete 

treatment would require a three-dimensional simulation. 

Nevertheless, the code's predictions compare reasonably well 

with experiment, and we conclude that the code Is a 

practical tool in studying the neutron tube's behavior. 
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Electron Stream Disruption by a Nonlinear, Infinite Ion 
Mass Instability 

D. W. A. Whitfield 
Department of Physics 

University of Saskatchewan 
Saskatoon, Saskatchewan 

ABSTRACT 

The one-dimensional behaviour of plasma electrons under 

the influence of an external electric field and a parallel 

ion density inhomogeneity was simulated on a computer. A 

non-linear wave, not due to the two-stream instability 

grew to large amplitude, causing both disruption of the 

electron stream and heating of the electrons by trapping. 

Introduction 

The following problem was studied:  the ions in a 

plasma were considered fixed with spatial density 

n. = n  (1 + A sin k. x). 

The electrons had a finite 'emperature, and initially were 

given the same spatial density as the ions. At t = 0, an 

external electric field, which increased from zero with 

time, was applied in the direction of the density perturbation. 

A one-dimensional simulation of the ensuing electron 

behaviour was carried out on a digital computer using the 

P.I.C. method developed by Morso and Nielson . This model 
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2 
1s similar to that used by Burger, Dunn and Halsted , with 

the additional feature of linear Interpolation tff the 

electric field betweel cell ends, and to the C.I.C. procedures 

of Birdsall and Fuss . The Important model parameters were 

as follows: A = 0.125, 30,000 sheets, 2 celltper Debye 

length, and a total of 500 cells In the length L = 2w/k.. 

All quantities satisfied the condition F(x) = F(x + L). The 

length of the time step was varied from 2ir/10u> to 2w/80w 

as required to maintain accuracy. The initial thermal 

velocity was 1.26 in units of cell length per time step. 

Results of the Computer Experiment 

Figure 1 shows the drift velocity, U, and r.m.s. velocity 

as functions of time. The increase of V   in the interval 

(o t/2ir = 25 to about 90 was due largely to macroscopic 

modulation of the electron stream velocity and did not 

represent more than a very little heating or trapping. 

The catastrophic decline of U and corresponding increase 

of V . after about u %fin -   100 were due to the trapping rms p 

of many of the electrons in the field of a large amplitude 

wave. After w t/2w =110, V   leveled off and U again 

Increased at the rate due to free acceleration in the applied 

field. 

The energy, e, in the self electric field is plotted 

against time in Figure 2. Also shewn are the energies in 

modes 2 and 3 during the times when they are most prominent. 

The rapid growth of e near u t/2n = 75 and 95 corresponds 

to resonance of modes 3 and 2, respectively. That Is, 

U = w /mk., where m = 3 and 2. The frequencies of these 
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in the applied field. 
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o 

Figure 2.  Energy in the s*lf electric field.  The 

vertical arrow indicates the time at which 

mode 3 passed through resonance. 
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waves wer« Indeed zero In the Ion rest frame, as revealed 

1n plots of the electric field or charge density versus x, 

for successive times. 

Before mode 3 became prominent, appreciable energy 

was 1n higher modes, whereas after about u t/2ir = 75, 

most of the field energy not In modes 2 or 3 was In mode 1. 

Figures 3(a) and 3(b) are phase space scatterplots 

for w t/2ir = 80 and 100. As the applied field was positive, 

most of the electrons have negative velocities. At 

w t/2ir ■ 80, mode 3 has reached Its greatest amplitude and 

three minima of the streaming velocity magnitude are 

visible. These correspond to maxim* of the density.  In 

Figure 3(b), mode 2 1s predominant, and has grown to such 

a large amplitude that electron trapping Is occurring.  At 

later times most of the electrons become trapped. 

In these scatterplots, the few particles separated 

from the main stream are remnants of an earlier, weak, 

electron-electron, two-stream instability which arose because 

some electrons remained at near zero velocity while the 

rest were accelerating in the applied field. The author has 
4 

reported this effect previously . 

Discussion 

The observed growing wave structures are not due to 

the two-stream instability, as the two-stream growth rate 

is zero for infinitely massive Ions. The uneven spacings 

of the velocity minima, as seen in Figures 3(a) and 3(b) 

Indicate the presence of important higher order modes and 

suggest that the instability is inherently non-linear In 
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Position 
(a) 

Position 
(b) 

Figure 3.    Phase space plots at (a) u t/2n = 80, and 

(b) K  t/2i  =  100. 
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character.  It Is possible that it is of numerical origin, 

but if so, it should be due to non-linear effects, as the 

simulation parameters (marginally) satisfy Langdon's 

condition for the absence of linear numerical instabilities, 

(XQ >> Ax, where Ax is the grid spacing.) That growth 

occurs at resonance, as described above, suggests a real 

plasma affect. The sharp peaks and broad valleys in 

V(x), Figure 3, and corresponding features in n(x) strongly 

resemble the form found by Davidson and Schräm for large 

amplitude electron plasma oscillations. 
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Interpretation of the Vlasov Equation 
Through the Wigner Formalism 

Mare. R. Feix* 
Groupe Physique The'orique el Plasma 

Nancy, France 

IKTBODUCTION 

The reasons for which this work has been undertaken are 

a little bit unusual and some preliminary explanations are in order. 

The motivation is strictly "practical". Ve *ont *° solve the classical 

VJasov equation i.e. an equation describing the motion of a phase 

space fluid. 

This equation describes very lov density and/or high 

temperature plasma. The validity and justification of the Vlasov equa- 

tion are nov veil established and, in this respect, comparison bet- 

ween the results of the Vlasov model and those of the numerical simu- 

lation of the N body problem (with the possibility, in this last 

case, of varying the graxniness factor) have been very useful and 

interesting. Consequently a numerical scheme for the solution of 

the Vlasov equation would be an extremely valuable tool. Unfortuna- 

tely, the difficulties are discouraging and actually, with the help 

of the biggest available computers (CDC 6600 ISM 360-91) only very 

simplified problems have been solved (one fluid, one dimension, not 

* A part of this work was done during the tenure of a NAS - KRC 
associateship at the Goddard Space Flight Center. 
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too strong nonlinearity, solution valid for a short time ... plus 

sometimes a credibility gap). 

In fact, the Lagrangian model (i.e. the simulation of 

the plasma by N bodies) is now the best practical scheme to study the Vlasov 

equation. This is a somewhat paradoxical result, the Vlasov model 

being the limit of the general case (vhen only collective motion 

are taken into account with a graininess parameter 

(respectively for three and one dimension) going to zero. 

Usually limiting cases are simpler to solve than the 

general ones but here this is not true and to treat smaller g ve 

must increase the number of particles and consequently the time of 

calculation. 

Why is an Eulerian numerical scheme for Vlasov equation 

so difficult ? Ve feel that the origins of the difficulties must be 

found in subtle correlations developping, as time goes on, in the 

phase space. To keep track of these correlations ve introduce smaller 

and smaller wavelengths both in configuration and velocity space. To 

stock and t.eat this increasing mass of information is a process 

which quickly overcomes the possibilities of the computer. 

In part I, we review some of schemes vhich partly solve 

this problem. Then we introduce a new sehen.» based on the use of the 

Schroedinger equation. At that point we introduce quantum mechanics 

and its relation with classical mechanics (since ve are mainly inte- 

rested in classical plasma). This is a very complex <ind much debated 

topic < 
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Interesting comments vill be found in/jl. Very quickly 

this question brings in the most famous papers, authors... and dis- 

putes on interpretation of Quantum fechanics. 

Of course we are not going to settle these problems. 

Let us repeat that our approach is strictly mathematical and numeri- 

cal. Ve vill find that, provided some initial conditions are ful- 

filled, the solutions of the Schroedinger equation can approximate 

as closely as vs iihe those of the Vlasov equation (with equivalent 

initial conditions). The mathematics involved in this projection of 

the phase space upon the- configuration (or the momentum)space will 

bring interesting problems (independent of the exact physical 

meaning). The solution of the difficulties connected to the physical 

interpretation is not -let us repeat it again- the purpose of this 

paper. 

Nei rrtheless, it is reasonable to expect that the mathe- 

matical vorks conducted on the connection betveen these three equa- 

tions (Vlasov, Vigner, Schroedinger) will help the quantum physicists 

and vill provide some stimulating results, Ve hope that the prelimi- 

nary results presented in part VII will lead in this vay. It is veil 

known that, often, useful indications on the physical meaning of an 

equation are brought by the solution of this equation. In any case 

a justification of this vork is already provided by the numerical 

schemes which will be obtained. 

II - DIFFICULTIES WITH THE NUMERICAL SOLUTION OF THE VLASOV EQUATION 

The method which, up to now, has given the best results 

is undoubtedly the expansion of the distribution function f(x,v,t) 
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into & Fourier Hermite series.p]  p] 

Numerical and analytical studies of this model f2] CXI 

have shown that numerical difficulties appear for a time T*(K V T  \H> 

where K is the maximum wavenumber kept in the k summation, V is a 
o o 

characteristic (for example thermal) velocity and N is the highest 

order retained Hermite coefficient. 

Ve note the slow increase of T with N and the fact that 

K must increase when the problem becomes more non linear. 

Up to now, in practical calculation, the k space has 

been "sacrificed" to the velocity space by taking a rather short box. 

For example, for the study of a two stream instability, the number 

of unstable modes considered is usually two or three and the others 

are neglected. As a consequence, the physical meaning of the results 

ran and should be discussed. 

To solve this problem we may dispose of the information 

stocked in the high order coefficients of the Fcrmite expansion. Of 

course, to do that, we must be sure that this information is useless, 

and this depends of the problem we want to ti»at. Moreover, we must 

avoid triggering numerical instabilities. The best way is to imitate 

nature and to introduce a Fokker Planck term. 

The Fourier Hermite transform of this term is -» nf, 
kn 

and introduces, for each component n, a damping proportional to n 

and to a collision frequency") which must be kept very small. A 

compromise must be found between a too large"}    (which may destroy 

the interesting results) and a too large N (with the associated nume ■ 
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rical difficulties). Analytical studies JVj lead to the interesting 

N"^ rs/ 2 or 3 compromise. 

Another popular model is the "Vater Bag" [Ä],  Ve deli- 

neate a region of the phase spcae such that at the initial time f=A 

inside aid 0 outside. Ve know that the initial value of f is carried 

over the trajectories of the particles. Consequently, we do not need 

to look at the trajectories of the particles inside the contour and 

we have simply to follow the evolution of the boundary. If the initial 

pnase space region is limited by two contours v and v we have to 

solve the two equations 

Ve feel that we got rid of the difficulties of the 

phase space. But we must me    a remarks. 

1) Ve paid a certain price for that i precisely we had 

selected a special subset of all possible intitial conditions. Espe- 

cially, by so doing, we have lost the important Landau damping pheno- 

mena. 

2) As soon as th<* problem is too much nonlinear the 

phase space complications are reintroducpd because V and V become 

multivalued functions for a given x, and the tvo contours become 

quickly very complex. (See for example in [7J the results of the two 

stream instability problems). Usually we must again neglect some of the 

details of the phase space if we want to keep the computer time under 

reasonable limits. 

736 



! 

Interpretation of Vlasov Equation 

III - HBSORT TO (USD HELP FROM) QUAMTttt MBCBANICS 

These finer and finer structure» in phase spac> remind 

us that, in this space, there is an eleaentary cell within which it 

is impossible to precisely specify the coordinate and the momentum of 

a particle.  The surface of this cell is it a. K/£Twher* h is the 

Planck constant. Ve must distinguish between two cases. 

- Classical case : the characteristic wavelength and 

aomentum involved in the problem are such that their product is much, 

much bigger than \   and we cannot follow the evolution of the phase 

space microstructure to the point where, effectively,, quantum effect? 

become important. Then we will use artificially increased quantum 

jffects and "fc . This increase should be sufficient to kill the nume- 

rical difficulties but small enough in order that quantum effects are 

unimportant for the wavelengths of interest. This is exactly the same 

philosophy which leads in the Fourier Hermite model of the Vlasov 

equation to the introduction of a small collision frequency. 

Also we use Lagrangian (N body) models with an increased 

-but still sufficiently sma*l graininesa factor- tt- keep down the 

number of particles. 

i 
As in these last models the more negligible we want to 

keep the und«sired quantum effects the larger will be the computer 

time required. Finally, in this case, we see that ve can be "cavalier" 

with the physical interpretation of the manipulated functions and thr 

Schroedinger scheme will be L mathematical trick to solve Vlasov equations 

- Quantum case : for solid state plasmas quantum effects 

become important and, nov, the correct interpretation of the manipu- 

lated symbols become important. Also the spin effects (and quantum 
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statistics) should be introduced. Consequently, the results found in 

this case with our proposed model hare only an exploratory character 

in agreement with the often repeated philosophy of this work. 

Ve r.ee consequently that to study classical plasma we must 

introduce not quite negligible quantum effects to decrease the» 

being quite expensive). Ve should see if the scheme is worth this 

price. The answer is yes. 

The main advantage is that wo are going to get rid of 

the phase space cr more precisely to describe it through one single 

function defined cither in the configuration or in the momentum 

space with numerical resolution of the rather simple Schroedinger 

equation on "f (x, t) 

The use of the Schroedinger equation is very logical 

since it must be realized that in this equation as in the Vlasov 

equation we deal with a single particle representing statistically all 

the particles. The motion takes place in a self ronsistent field o\- 

tained by integration of the Poisson equation where the electrical 

density is obtained respectively from f(x, v, t) and i (x, t). 

IV - SCUROEDIKGEB - V1GXER - VLASOV 

Now we must deal with the exact mathematical formulation 

of the above mentioned ideas. Especially we must clearly understand 

how, with a function of one independent variable Y (*) we can repre- 

sent the behaviour of a function of two independent variables f(x, v). 

The crucial point is the use of the Vigner distribution function usua'- 

V introduced through the density matrix and ensemble avenge. Here wt 

will make a simpler demonstration, building directly the Vigner func- 
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tion from T and exhibiting the equation governing this function. 

Let us specify the problem and the notations. 

Ve vill suppose from nov a one dimensional, non relativistic 

motion, taking into account only electrostatic forces described by a 

potential 0. Moreover to simplify, ve vill suppose e = m => = 1. 

Ve have inside a box of length L a population of N elec- 

trons embedded in an uniform motionless distribution of N ions. I  is 

supposed normalized and obeys the Schroedinger-Foisson-equations sys- 

tem. Consequently 

4 
(i) 

(2) 
Ox1     •- L * 

Jo 
(1) and (2) describe the evolution of the information in 

the configuration space. But itia well known that x   includes also 

information on momentum space. Ve define 0 (k, t) the Fourier trans- 

form of j (x, t) 

ea »•»*>**■ j*("-t)*+~A"u% 

The density in velocity (momentum) space is ö p while 

the density in configuration space is j    j (Note that with our 

notations kam rfa= v). 

As it is well known there is quite satisfactory recipro- 

city between the two spaces. For example, the operator connected to 

the average position is X * *  in configuration space and x t t "/Sk 
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in momentum span« while the average momentum is given by the operator 

p = k in momentum space and ( =-l'*yi)«in configuration space. Conse- 

quently 

(3) 

Ve see that the Schroedinger equation gives consequently 

information on the properties of the particle in both spaces. Can ve 

get simultaneously information on both spaces vith of course an 

uncertainty margin ? At that point -and vithin our utilitarian philo- 

sophy- the introduction of the Vigner function allows us to answer yes. 

(See £lj for a more physical discussion on the statistical interpre- 

tation of quantum mechanics). 

Vigner introduces a function f(x, v) from the Schroe- 

dinger function *f (x). Ve like to consider this process as an induc- 

tion of information. 

Ve have 

^..v).(iv)-1 jtoffc-fc) **f-l)«tJ»a 
(4) 

Ve like to point out that radar theoreticians introduce, 

from a signal S(t) the so called ambiguity function through a quasi 

identical relation. See Jj], 

e. nscc)\z & 
J.oo 

If in (4) ve change A to-A, the element under the 

sign is changed to its complex conjugate. Consequently, f is real ; 
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unfortunately f is not necessarily positive and this is probably the 

biggest difficulty for a physical interpretation of the Vigner function. 

Nevertheless, f can be used as if it was a "bona fide" 

distribution function. For example, „o  compute the density n(x) ve 

vill write 

The last integral is trivial and gives t  (A)» Consequent- 

.  I.    ..    *....** 
l(n).Ur«.v)Jiv«4f^^*) 

Then we compute the Fourier transform with regard to the 

x variable of  f (x, r) 

(6) 

(7) 

(8) 

combining (4) and (6) we find 

Taking into account 

y (»4 j).pi)^JeM^ivV«*|)Jv' 

Ve carry over (8) into (7) 

The two integrals on A and x give : 
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prf I(V-V-y J(S^L'-v) 

and ve obtain 

(9) F(M).   6(-4)0*(v-|) 

(9)  is for the momentum space the equivalent of (4) for 

the configuration space. If Y = 0 

F(v,T.o)«JfCjc,v)JÄ  .fl<v)eV) 

and ve obtain the density in the velocity space. 

V - EQUATION OF EVOLUTION OF f. THE POTENTIAL 0 IS ZERO 

Starting from (4) we get 

,0* 

do)   T>t    -wJJ;   ^t        l l    V 

But T satisfies the Schroedinger equation. Consequently 

rn>9   i^y 

Combining (11) and (10) 

(1 
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V« take into account the definition of f. 

V 

(13) 
i) 

Ve integrate (13) by part* 

(14) 

tly »Jr.   »» Consequently - * ^ 

(15) J._r.*,   AN 

ft*) 

(15) and (12) show that 

This is the Liouville equation for free particles. 

VI - EQUATION OF EV0LUT7.ÜN i j =4=  0 

The computation of v y.f is the same. But the computa- 

tion of^£ ia  different. Instead of (It) we get 

(17) 
'it. k n± „iff 

Ve plug (17) in if and compute 111 + V ^f. 
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Ve ge* instead of (14) 

(18) 

(19) 

Ve introduce the operator A defined in the following way 

Introducing in (19) the f definition (See (4) ) 

At -JJLJj^i(*-»5a[#f«-j;-*f»*i;]- 
♦ {.♦ $)**(»-$) «a-i'A MJA*»' 

Ve first integrate on v'. Ve get £TT b(A+Ak Then 

we integrate on /\ and obtain 

Except the change of notation A-*A(20) is strictly iden- 

tical to the last term of (18). Finally we obtain the Vigner equation. 

(20) 

2f*2£-L 
^t  ^* if 

(21)   * 

J[^l(v-V)4[*(»-J].#f.^. 

. {(».v'.fcjJv'Jo --O 
Classical limits and quantum corrections 

Ve want to obtain the classical limit of (21). Ve must 

remember that we have takenft = 1 and consequently the term exp-iv^ 

of (18) should be written exp-imvA/"fc • If »-» O (classical limit) 

this term is violently oscillating and only the region in the neigh- 
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bourhood of A= 0 gives a non negligible contribution. Consequently 

we may developp $(*+ A ) and f[*-&\a.To\wA  the value x, keeping 

only the four first terms. 

(18)  is written 

(22) 
Dt    Ox  iir J[ u 2L*   A* 

Ox 
V# LI. 

^     Ox* J 

¥■» easily check 

(23) 

Introducing the field E = — '"dy/VX we obtain for (22) 

(24)    9t      Ox*     Qv   *«^OxlOvJ 

Ve introduce e, ir. and If in (24) which becomes : 

(25) 

(25) is just the Vlasov equation provided with a second 

member, vanishing with "ft . It is interesting to compare the orders of 

■aagnitude of this term and the Vlasov term. The ratio is 

where v is the characteristic velocity of the distribution. Consequent- 

ly the order of the correction is ( \[2A) K    r*   where "X        is the 

De Broglie wavelength. 
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VII - INITIAL CONDITIONS ; A STNTHESIS PROBLEM 

Ve have, in the preceeding paragraphs, found an interes- 

ting connection between the Schroodinger equations on one side and the 

Vigner and Vlasov equations on the other. To solve Vlasov, we replace 

it by the Wigner equation (keeping small the quantum correction) and go 

to the Schroedinger formalism. Consequently, ve must use a wave func- 

tion vhich will represent through its variation in x both the varia- 

tion in configuration space and velocity space of f(x, v). Probably 

this vill require quite a few modes. To get a more precise idea let 

us consider the momentum space (See Figure 1). 

0 ko *M +      *f\ 
If Vpj is the maximum velocity above vhich the number of 

particles is negligible, we must keep all the wavenumbers up to 

■ft * TW Vft /"(j. On the other hand we know that the Fourier componsnts 

of the electric field are damped above a certain vavenumber k (k is K oo 

the inverse of the Debye distance for a Maxwellian Plasma). Consequent 

ly the ratio of the corrective t.rm to the Vlasov term is given by 

and if T$H/ft0»|Othe corrective term vill be of the order of 4 x 10 . 

Finally if we use a box of length L we can hope that 10 wavenumbers 

will give already a good picture of nonlinear interactions. Altogethei 

this gives 100 modes. Of course, this guess must be submitted to a 

numerical test. Finally we may find come comfort in the fact that quaii- 

turn effects are also interesting by themselves. 

One important advantage is that ve do not have to decide 

hov ve will divide our effort between the c nfiguration and momentum 

space. This is automatically solved. Also solved is the problem of the 
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tt convection term V zl.   which in the Fourier Hermite model vas respon- 

sible of the appearance of higher and higher Hermite coefficient. 

A difficulty appears on the time behaviour of the small 

wavelengths components which oscillate with the very high frequency 

!dta« h.*A?m. Bui, this difficulty appears also in a classical frame 

as this has been recently recognized on the Fourier Hermite model. 

Numerical multiple-time-scale treatment would help. 

Finally ths Schroedinger equation must be considered as a 

new numerical model in plasma physics. Practical results are now neede<< 

in order to test the exact value of this method. 

However, there is a fundamental problem that we have 

still to solve. The resolution of Vlasov can be replaced by the reso- 

lution of the Schroedinger provided there is the possibility of intro- 

ducing correct initial conditions. 

From (4) we see that y (x) gives  f(x, v). But the 

inverse is not true. Finally we face again the problem of doing with 

the independent variable x the job of the two independent variables 

x and v. 

In a certain way the situation reminds us of the Water Bag 

model where the initial situation has a very special form. However, we 

think that as soon as we go to the classical case we may synthesize 

any initial conditions, at least in average. Let us take an example. 

Vc want to represent the initial situation corresponding 

to an homogeneous two stream plasma with velocities - V, Ve feel that 

we should take 

(26) $(*)*!. f«*fv-1V* 4 C*|l LVAeÜ C*>\f* 
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Plugging (26) in (4) we obtain 

The tvo first terms of (27) correspond to the situation 

we wanted to realize but we get an «xtra third term which in fact 

oscillates in space with the very small wavelength 2 m yffjfi . If ti-*0 

as soon as we average on a small but finite distance this distribution 

of particles alternatively "existing" and "antiexisting" we get zero. 

But we see that the disappearance of the unwanted term is not trivial 

and we forecast difficulty in the synthesis problem. 

As we point out already the Radar theoreticians have stu- 

died this problem for the ambiguity function (as given by (5) ). They 

introduce what they call sophisticated signals, obtained by repeating 

a large number of times the same elementary signal. Ve study the distri- 

bution function corresponding to 

(28)   f£*)*£ tyt*-*t) 
**-oo 

Let us call 6 w the Fourier transform of ♦ (.).» e intro- 
duce (28) in (4) and obtain after a little algebra : 

f(«'V)^"*£x(v-\7{)-^-t*\fc£e(^)- 
(29) **-•» <p3lo 

eVi)tf Hi-fi*-!* 
\Q    is a velocity ^s^TT*/-»*^ = 2Y/$ 

Ve see that f(x, v) corresponds to a set of beams of velo- 

citySw/2>> The stratification of the velocity field is not surprising, 

0(x) being a periodic function of spatial period L. In fact ve would 
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expect a stratification with a jump equal to W and not Y//l-  (The 

Fourier transform of 0(x) being different from zero only for integer 

multiples of yff  ). This is at this point that ve see that the Vigner 

function has been obtained by introduction from 0(x) of a more detailed 

information (with a controversial physical meaning). 

On the other hand if we integrate f(x, v) as given by (29) 

on x  to get the velocity distribution we obtain 

ijef(».v)«l» . 2T **£ *(v-*f) 

Ve see (on 30) that if s m £ct  the last integral is 

zero. On the t ti-er hand if s is even we get (s= 24) 

(3D ^J ft*,^M* <?n *"*£ S(v-^j GC^)Ö*(^) 

which is nothing else but the usual results of the theory of velocity 

measurement in quantum mechanics. Finafy, if ve take NY»)-eY^ve have 

»!«-•» %.s-o* 

Vc see that particles will be located at points x =H» | 

we take into account this result to replace in (29) x by%t/£ and 

compute 

Consequently 
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Eq. (33) (See figure 2) shows a distribution of particles 

"existing" and "antiexisting" with well precised velocities v = S »/,£, 

and locations x = % </£. The uncertainty principle appears in a curious 

form. It would be interesting to try to synthesize distribution functions 

with no "antiexisting" particles and also to try to concentrate on one 

of the "existing" particles an important probability. 

Sophisticated signals as given by (28) show how we will 

build a plasma homogeneous in average with a given velocity distribu- 

tion. An often used trick will allow us to build from this situation an 

initial wave. Let us suppose that we apply to this plasma a large po- 

tential 0  (x) during a very short time X.  such that 0(x) L   is finite 

and "C  can be considered as arbitrarily small. 

v/fy    ; I - i ■   '   :   - i - r 

- - ■► 4 H ► t 1 -fi ««h t-«► t -o-4- f m 4 ■ 
<4ftfttt*l*ffT *V ' 
:hf ♦ ft- -£ HfU , f  A   »4-*H -f-< _•-, |.-f A   • 

-<I4H4-U4«IH o-fto-ft-4-» 

4fff 
-3 -i -/ 

*-<►*-.-#> 

Figure 2 

o "existing" particles 

g "antiexisting" particles 

If JTo(x) wa* thc Schrocdinger function before the application of the 

pulse, due to the smalluess of t   one can easily obtain for J (x) (the 

function after the pulse) 

(3D f i») * %c*>«t -L*c%)zn ■ &<%H-^T 

This last expression corresponds to a f(x, v) given by 
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""*" • e^-ivA ^A 
in the classical limit ve have already pointed out that  <P/ n 4 A J 

should be expanded around x 

Combining (35) and (36) we get for the classical limit 

as it should be. 

The applied potential can be as strong as ve like : pro- 

vided its duration is arbitrarily short,(34) is always valid. 

VIII - LINEARIZED FORM OP THE VIQNEB EQUATION -  QUANTUM DIELECTRIC 

CONSTANT 

In the linear treatment of the Vigncr equation we suppose 

that the distribution function f(x, T, t) = Jlv) t  f.(x, v, t) vhere f 

(and also the self consistent potential 0 associated to f ) are consi- 

dered as small perturbations. It oust be pointed out that because of 

the nonlinear relation connecting y and fi it is impossible to consi- 

der the strictly equivalent problem in the Schroedinger formalism vhere 

the interaction between thermal and collective effects is taken into 

account through interactions between the different jjO(The only excep- 

tion is the cold plasma case withT'f* i(and  F(wj s. i (*] 

The linearized form of the Vigncr equation is now written 
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V* take into account 

(38) ft*)* Un)^-rt* M 

We Fourier analyse (37). We get 

(39) 2fc-i4vf 4^.{U|ii(v.^AfCefh;4|}- 
**'   .    * A»VX,«. ^/..nJ. J../.1 t«* -l* £)' $>(*; r(y'jJA A*'*o 

(39) is integrated first on ^ which brings the Dirac 

functions >(v-v'4 * ) and *>^V-V*'. 4 ] 

The v integration becomes trivial. Taking into account 

E(K) = ikflfOO, (39) becomes t 

^.  • £.    ß      c ri. 4. \ Hv4^U) - Wv-G/t) 

To obtain the classical limit we take the first term of the k expansion 

of FCvt %.\ 

The Laplace transform on time is introduced in (40) and 

f and the density are computed. Completing vitb the Poisson equation 

the dielectric constant is easily obtained. The dispersion equation 

takes the form (ve call s = ioa the Laplace variable) 

(41) 

I' «f mt K art re introduced and if **>»V s l»T We*/»* 
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(41) takes the form 

iu>; 
(42)€ ({.&)* \+~ ff(f^)-^-^,.n 

II - STATIONÄR! SOLUTIONS OF THE VIGNER EQUATION 

Takiag^d/^f s. 0 gives the stationary solutions of the 

Vigner equation (21)« Let us show that these solutions correspond to 

the stationary solution of the Schroedinger equation defined by 

(43) H ^ ' E ^ 

(43) can be written 

(44) 

Introducing (44) in (20) we compute the term A f in the 

Vigner equation r equation jf » . 

In (45) the first and third U>rm in I l cancel. We 

compare with (15). K J  is solution of (43) then, indeed : 

Finally wc notice the interesting case of the harmonic 

oscillator with^= (1/2) Kx 
. 2 

E . - il . - * * 

(46) ff»t;-tf«-i;-f«^--flE 
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Consequently for the harmonic oscillator the Vigner equa- 

tion is strictly identical to the classical equation. This is also true 

for uniform and uniformly accelerated motions. 

Consequently for the harmonic oscillator the solutions are 

function only of the energy E = (1/2) V2 + (K/2) x2 

*(x, v) m F(l/2 y2 + K/2x2) 

Ve compute the distribution f(x, v) for the two first 

eigen functions of the Schroedinger equations for the harmonic oscilla- 

tor. Ve take the energy ftfa>=T|/£ equal to unity. We get for the first 

eigenfunction 

(47) 

**0   <E>-  i/o, 

{(*,«)  = ¥"' **p-2f 

In this case f is positive for all value of x and v. For 

the necond eigenfunction 

*a| <£> = % 

(48) f*«,v;.tf/ir)«n-^r (,?*-£) 

It should he noticed that the element dx dv of the phase space can be 

vritter 2T  f df   where f a(x,+ Vt)5^ 

Taking into account E = (1/2) (v + x ) we see that fdf= dE and 

dx dr—*■  2JTdE (the integration on E being carried from 0 to infinity). 

It can be checked that (47) and (48) fulfill the two relations. 

j| ^,*;Edydv *°J*ft*,v;«¥ edr=^e> 
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